homehome Home chatchat Notifications


Researchers uncover how the freak cold wave of 2018 formed

Fantastic weather and how to predict it.

Alexandru Micu
September 18, 2019 @ 9:28 pm

share Share

New research is uncovering the source of the extreme cold wave that hit Europe and Asia during the winter of 2018.

Image via Pixabay.

Last winter, around February, a mass of extremely cold air descended upon Eurasia. The record-breaking cold came from the splitting of a body of air high above the Arctic called the polar vortex, and lasted for almost a month. However, at the time, the incoming mass of cold air wasn’t spotted until it was already upon us.

New research is looking into the origins of this event in a bid to help predict similar weather in the future.

A recipe for cold

“It’s one mechanism that potentially explains a third of these events historically,” said Simon Lee, an atmospheric scientist at the University of Reading, UK, and lead author of the new study. “That just one event in the Atlantic has contributed to a third of them is quite surprising.”

The study reports that a cyclone-induced chain of events led to warming in the stratosphere in 2018 and caused the Arctic polar vortex to split in two, causing the extreme cold. Weather forecast models weren’t able to anticipate the stratospheric warming until the start of February, roughly 2 weeks before it happened, which prevented them from anticipating the extreme cold that followed.

The stratosphere is the second layer of the Earth’s atmosphere. It’s a generally cool, dry place, and it’s also the home of the Arctic polar vortex, which circulates around Earth’s North Pole. If average temperatures in the stratosphere go up, the polar vortex weakens and splits in two, which can cause outbreaks of cold weather across the Northern Hemisphere.

Such stratospheric sudden warming events are generally predicted by observing the troposphere (the part of the atmosphere that we live in). We look at how the troposphere behaved prior to stratospheric events, then we build models to predict what’s going on up there based on what we’re seeing down here. But, these models are imperfect and don’t always catch how temporary weather patterns influence the stratosphere.

The study reports that a cyclone-induced chain of events led to warming in the stratosphere in 2018 and caused the Arctic polar vortex to split in two, causing the extreme cold. Weather forecast models weren’t able to anticipate the stratospheric warming until the start of February, roughly 2 weeks before it happened, which prevented them from anticipating the extreme cold that followed.

Looking at historic weather data, the team found that the same series of events has caused sudden stratospheric warmings in the past. The same unusual weather patterns occurred 49 times between 1979 and 2017, before 35% of the stratospheric warming events recorded over this period.

The team says that their findings help flesh out our understanding of sudden stratospheric warming events. The data suggests that looking for changes in the air masses over Greenland and Scandinavia could help predict extreme cold outbreaks in the future, with weeks or months in advance.

The paper “Abrupt Stratospheric Vortex Weakening Associated With North Atlantic Anticyclonic Wave Breaking” has been published in the Journal of Geophysical Research: Atmospheres.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes