homehome Home chatchat Notifications


China takes quantum supremacy lead

This quantum processor completed a complex task in a little over an hour -- about 60,000 times faster than a classical supercomputer.

Tibi Puiu
July 6, 2021 @ 8:36 pm

share Share

Credit: The University of Science and Technology of China.

Researchers in China have demonstrated the most powerful quantum computer in the world, a 56-qubit machine that can perform operations orders of magnitude faster than Google’s quantum computer — its closest competitor. The Chinese quantum computer completed a complex calculation in a little over an hour, a task that would take a classical supercomputer eight years to perform.

China’s quantum supremacy

The task performed by the new Zuchongzhi quantum computer is yet another demonstration of “quantum supremacy”.  The mythical-sounding term describes crossing the threshold where quantum computers can do things that conventional computers cannot in a reasonable timeframe.

Quantum computers exploit the mathematical quirks of the quantum world to vastly outperform classical computers.

Digital computers require data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), whereas quantum computers use qubits, also known as quantum bits, that can exist in multiple states simultaneously.

In 2019, Google’s 54-qubit quantum processor, known as Sycamore, was the first in the world to achieve quantum supremacy. But its fame was soon overshadowed by Jiuzhang, an optical circuit 53-qubit quantum processor developed by researchers at the University of Science and Technology of China in Hefei.

Rather than superconducting materials on a chip, Jiuzhang uses optical circuits that perform calculations using photons instead of a flow of electrons as used by Google’s Sycamore. Jiuzhang performed a complex task in 200 seconds that would have taken the fastest Chinese supercomputer, TaihuLight, around 2.5 billion years to arrive at the same result.

However, Jiuzhang is a one-trick pony. It’s a specialized device that can’t be programmed to perform any other task. So in many ways, Google’s machine was much more practical despite the fact that Jiuzhang was much faster at completing its specialized task.

Credit: University of Science and Technology of China.

Now, researchers in China have demonstrated a much more versatile 66-qubit quantum computer, known as Zuchongzhi. The machine was developed by a team led by Jian-Wei Pan at the University of Science and Technology of China in Shanghai and has 11 rows and 6 columns of qubits forming a two-dimensional rectangular lattice pattern.

Zuchongzhi used 56 of its qubits to complete a random quantum circuit sampling task, which the researchers call an “outstanding candidate to demonstrate quantum computational advantages.” The idea is that this task is far too complex for a classical computer to solve in a reasonable timeframe and around 100 times more challenging than the one solved by Sycamore — but Zuchongzhi was up for it.

Zuchongzhi finished the sampling in 1.2 hours with just 56 qubits. This shows that the two-qubit edge over Sycamore matters a lot. Every additional qubit makes the quantum processor exponentially more powerful, which is why all of these advances are such a big deal.

“We estimate that the classical computational overhead to simulate Zuchongzhi is 2-3 orders of magnitude higher than the task implemented on Google’s 53-qubit Sycamore processor. Therefore, our experiment unambiguously established a computational task that can be completed by a quantum computer in 1.2 hours but will take at least an unreasonable time for any supercomputers,” the Chinese researchers wrote in the pre-print server ArXiv.

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.