homehome Home chatchat Notifications


These microbots can remove 95% of toxic heavy metals from polluted waters in only an hour

A new solution proposed by researchers in Germany and Spain is so elegant and effective that it might revolutionise water purification.

Tibi Puiu
February 21, 2017 @ 7:07 pm

share Share

All over the world, industrial processes release tonnes and tonnes of heavy metals in wastewaters. Cleaning up after them can be arduous, expensive and, well, just not worth it most of the time. A new solution proposed by researchers in Germany and Spain is so elegant and effective that it might revolutionise water purification. They suggest that a swarm of microbots, each no bigger than a strand of hair, could remove 95% of polluting heavy metals from water in less than an hour. These microbots can be then cleaned and prepared for re-use multiple times, thus closing the loop.

llustration of a self-propelled graphene oxide-based microbot for removing lead from wastewater. Credit: Vilela, et al. ©2016 American Chemical Society

llustration of a self-propelled graphene oxide-based microbot for removing lead from wastewater. Credit: Vilela, et al. ©2016 American Chemical Society

“This work is a step toward the development of smart remediation system where we can target and remove traces of pollutant without producing an additional contamination,” said coauthor Samuel Sánchez, at the Max-Planck Institute for Intelligent Systems in Stuttgart, Germany;

In the new study, the researchers focused specifically on removing lead from wastewater by designing tube-shaped microbots with three functional layers.

The design is quite simple but ingenious. Each tube-shaped microbot consists of three layers. The outer layer is made of graphene oxide that absorbs the lead from the water. The middle one, made of nickel, is what makes the microbot ferromagnetic. This way, an external magnetic field can both direct the bots’ movements and retrieve them once their job is done. The inner layer is made of platinum and allows the microbots to self-propel themselves through the water. You have to add hydrogen peroxide first to the wastewater. When the platinum reacts with the hydrogen peroxide, oxygen microbubbles are created and ejected through the back of the microbot. This creates pressure which moves the microbot forward.

It’s all done without moving parts — just chemistry and magnetism. You can see some in action in the video below.

The same magnetic field collects the microbots from the wastewater once their mission is over. These are then treated with an acidic solution to remove the lead.

For now, these contraptions are designed for removing lead, but it can be tuned for other heavy metals like mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl).

“We plan to extend the microbots to other contaminants, and also importantly reduce the fabrication costs and mass-produce them,” Sánchez said.

Reference: Diana Vilela, et al. “Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water.” Nano Letters. DOI: 10.1021/acs.nanolett.6b00768

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.