homehome Home chatchat Notifications


With a few cheap changes, your smartphone can now detect lead contamination in water

Smartphones can be turned into a water quality sensor, too.

Alexandru Micu
September 27, 2018 @ 10:42 pm

share Share

Researchers at the University of Houston want to help you avoid lead intake from drinking water, so they’re working on an inexpensive system that turns your smartphone into a detector for the metal.

Smartphone microscope.

Researchers built a self-contained smartphone microscope that can operate in both fluorescence and dark-field imaging modes and paired it with an inexpensive Lumina 640 smartphone with an 8-megapixel camera.
Image and caption credit University of Houston.

Following the Flint debacle — when insufficient water treatment capabilities flooded the city’s pipelines with contaminated water — public attention to the health risks posed by lead have soared sky-high. In a bid to protect people from events like this in the future, the team developed an inexpensive system using a smartphone and a lens made with an inkjet printer that can detect dangerously high levels of lead in tap water.

Pb solved

“Smartphone nano-colorimetry is rapid, low-cost, and has the potential to enable individual citizens to examine (lead) content in drinking water on-demand in virtually any environmental setting,” the researchers wrote.

Lead is quite toxic, even in small concentrations, and especially for young children. EPA guidelines state that levels under 15 parts per billion are safe to drink but, according to Shih, consumer test kits on the market today aren’t sensitive enough to accurately detect lead at that level.

To address this problem, the team equipped an inexpensive smartphone with an inkjet-printed lens and, using the dark-field imaging technique, produced a system that is both portable and easy to operate. But, more to the point, the team’s rig can detect waterborne lead in concentrations as low as 5 parts per billion in tap water, and as low as 1.37 parts per billion in deionized water.

The work draws heavily on a previous open-source dataset that Shih and his students published last year. That paper explained how to convert a smartphone equipped with the elastomer lens into a fluorescence microscope (and has since become the most-downloaded paper in the Biomedical Optics Express journal’s history). The present work also incorporates color analysis into the mix, which the device uses to detect lead nano-particles.

As per the previously-published dataset, the team built a microscope that can operate in both fluorescence and dark-field imaging modes. They then paired it with a (relatively cheap) Lumina 640 smartphone with an 8-megapixel camera.

In order to test their device, the team spiked tap water with various levels of lead — from 1.37 parts per billion to 175 parts per billion. They then added chromate ions, which react with the lead to form lead chromate nanoparticles — the latter being what the microscope actually detects. The analysis process itself is more complicated but suffice to say that by the last step of preparation, the team obtained a solid sediment that contained all the lead from their water sample.

The microscopy imaging capability proved essential, Shih said, because the preparation process resulted in so little sediment that it couldn’t be imaged with an unassisted smartphone camera, making it impossible to detect relatively low levels of lead.

“We wanted to be sure we could do something that would be useful from the standpoint of detecting lead at the EPA standard,” Shih said.

The paper “Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water” has been published in the journal Analytical Chemistry.

share Share

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.