homehome Home chatchat Notifications


Copper foam turns CO2 into useful chemicals

Brown University researchers reported the development of a copper foam which could turn CO2 into useful chemicals such as formic acid – a preservative and antibacterial agent in livestock feed. As CO2 emissions continue to grow, scientists are trying to find potential uses to it. The problem with carbon dioxide is that it is extremely […]

Henry Conrad
August 13, 2014 @ 7:26 am

share Share

Brown University researchers reported the development of a copper foam which could turn CO2 into useful chemicals such as formic acid – a preservative and antibacterial agent in livestock feed.

Copper1

Copper is the only metal that can reduce CO2 to useful hydrocarbons. A foam of copper offers sponge-like pores and channels, providing more active sites for CO2 reactions than a simple surface. Credit: Palmore lab/Brown University

As CO2 emissions continue to grow, scientists are trying to find potential uses to it. The problem with carbon dioxide is that it is extremely stable, so breaking it and making useful industrial chemicals is no easy feat. The catalyst they made from copper foam has “vastly different properties” from catalysts made with smooth copper in reactions involving carbon dioxide:

“Copper has been studied for a long time as an electrocatalyst for CO2 reduction, and it’s the only metal shown to be able to reduce CO2 to useful hydrocarbons,” said Tayhas Palmore, professor of engineering and senior author of the new research. “There was some indication that if you roughen the surface of planar copper, it would create more active sites for reactions with CO2.”

Copper foam was virtually ignored until a few years ago, when it started receiving the attention it deserves. The foam is created by depositing copper on a surface in the presence of hydrogen and a strong electric current. Hydrogen creates bubbles and the copper is deposited in a sponge-like arrangement of varying sizes.

After the foam was created, researchers set out to experiment, and see which chemicals strongly react to it; lo and behold CO2 was one of the winners. Their experiments showed that the copper foam converted CO2 into formic acid much more efficiently than common copper. The reaction also produced small amounts of propylene, a useful hydrocarbon that’s never been reported before in reactions involving copper.

“The product distribution was unique and very different from what had been reported with planar electrodes, which was a surprise,” Palmore said. “We’ve identified another parameter to consider in the electroreduction of CO2. It’s not just the kind of metal that’s responsible for the direction this chemistry goes, but also the architecture of the catalyst.”

To me, it’s remarkable that a material so common and well studied as copper still yields surprises for us. But it’s clear that we still have much to learn about it.

“People have studied electrocatalysis with copper for a couple decades now,” she said. “It’s remarkable that we can still make alterations to it that affect what’s produced.”

Source: Brown University.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes