homehome Home chatchat Notifications


Bacteria nanowires clean up Uranium contamination

Ever since uranium has been mined and atomic bombs have been tested, some areas have had to deal with the contamination of sediments and groundwaters by toxic soluble uranium. Now, this problem could be solved with filaments growing from a specific bacteria. Some clean-up methods already use the bacteria to solidify Uranium in sediments, but […]

Mihai Andrei
September 7, 2011 @ 4:57 am

share Share

Ever since uranium has been mined and atomic bombs have been tested, some areas have had to deal with the contamination of sediments and groundwaters by toxic soluble uranium. Now, this problem could be solved with filaments growing from a specific bacteria.

Some clean-up methods already use the bacteria to solidify Uranium in sediments, but the whole phenomena is not yet well understood, and as a result, cleaning up this radioactive element is extremely problematic. However, a team of researchers from Michigan State University has identified a group of bacteria known as Geobacter, which produces tiny protein filaments, or nano-wires, that remove the dissolved uranium from waters and precipitate it outside the cell. Their research explained how the whole phenomena works, and how it can be used to our advantage.

Practically, the filaments transform the soluble form of uranium into a less-soluble form which is much more easy to remove from sediments. The reaction is interestingly enough a by-product of the bacteria’s own metabolism, which generates energy by altering the chemistry other metals.

The team has found a way to purify the nano-wires in the natural population of Geobacter, and to genetically increase their concentration. They claim that “envisions these nano-wires being incorporated into devices, for use in places like Chernobyl and Fukushima where the radiation is too high for the bacteria to survive.”.

Such a filament measures only four nanometers across, but many of them create a network several times bigger than the cell itself, and the amount of solid uranium deposited is proportional to the number of filaments.

Via BBC

share Share

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

The World's Oldest Known Ant Is A 113-Million-Year-Old Hell Ant with Scythe Jaws

A remarkable find for ant history was made, not in the field but in a drawer.

Your Cells Can Hear You — And It Could Be Important for Fat Cells

Researchers explore the curious relationship between sound and gene expression in cell cultures.

Scientists Create a 'Power Bar' for Bees to Replace Pollen and Keep Colonies Alive Without Flowers

Researchers unveil a man-made “Power Bar” that could replace pollen for stressed honey bee colonies.

First-Ever Footage Captures a Living Colossal Squid—And It’s Just a Baby

A century after its discovery, the elusive giant finally reveals itself on camera.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.