homehome Home chatchat Notifications


Chandra X-ray and MeerKAT data reveal a busy galactic center

The study found magnetic phenomena in the center of the Milky Way that resemble those in our solar system

Paula Ferreira
June 7, 2021 @ 7:07 pm

share Share

Using data from the NASA Chandra X-ray Observatory and South African radio telescope MeerKAT, astronomer Daniel Wang detected magnetic threads and plumes emerging from the center of the Milky Way. Turns out, the center of our galaxy is proving to be a prolific zone for this type of phenomenon.

Credits: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT. X-ray: orange, green, blue, purple; Radio: lilac, gray;

Magnetic threads

The image depicting the features clearly shows a large number of threads near the galactic center. They are related to nonthermal radio filaments (NTF) — polarized filaments perpendicular to the galaxy and whose origin is still a mystery. The NTFs are the purple lines crossing the galactic center in purple representing the radio emissions.

The images also show bright white objects which — this is cosmic dust detected by X-ray sensors. This isn’t the type of dust you normally see around your house. Specs of cosmic dust are only slightly bigger than a molecule, but that can be enough to act as seeds to form planets and asteroids. The fuzzy glow is a result of the X-ray scattering, which is only possible with a sufficient amount of dust between the source and Chandra.

Credits: X-ray Chandra & Radio MeerKAT Image of G0.17-0.41.

The most interesting thread is the one called G0.17-0.41. Narrow and vertically oriented with respect to the Milky Way, it emits both radio and X-ray — which may be indicative of a process called magnetic field reconnection. Reconnections happen when magnetic fields connect and then disconnect, which allows a massive energy transfer to happen. This is often a type of space weather phenomenon which occurs after solar flares, magnetic fields form a crossed shape that leads to a separation, then magnetic field lines are separated from the original one.

A cross-section through four magnetic domains undergoing separator reconnection.

Large plumes emitted by the galactic center were also observed. The Chandra/MeerKAT plumes have 700 light-years of extension on both sides of the galactic plane, much smaller than the Fermi Bubbles, but farther enough to appear visually disconnected from the galactic center – also a reconnection example.

With this recent discovery, it was also possible to detect several supernovae remnants, as well as neutron stars, and black holes. The most prominent black hole is the Sagittarius A*, our central supermassive black hole. This new view of the galactic could help explain similar features in other galaxies.

The study was published in MNRAS.

share Share

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Want to make the perfect pasta? Physics finally has the answer

Cacio e pepe has just three ingredients, but mastering it is harder than it looks.

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.