homehome Home chatchat Notifications


New process could capture CO2 and make it coal again

"Poetic justice" comes to mind.

Alexandru Micu
February 27, 2019 @ 10:32 pm

share Share

Instead of burning coal and releasing CO2, new research plans to absorb CO2 and produce coal.

Charcoal.

Image via Pixabay.

A new breakthrough could allow us to burn our coal and have it, too. Researchers from Australia, Germany, China, and the US have worked together to develop a carbon storage method that can turn CO2 gas into solid carbon particles with high efficiency. Their approach could help us scrub the atmosphere of (some of) the greenhouse emissions we produce — with a certain dash of style.

Coal idea

“While we can’t literally turn back time, turning carbon dioxide back into coal and burying it back in the ground is a bit like rewinding the emissions clock,” says Torben Daeneke, an Australian Research Council DECRA Fellow and paper co-author.

The idea of permanently removing CO2 from the atmosphere isn’t new — in fact, it’s heavily considered as a solution to our self-induced climate woes. We’ve developed several ways to go about it, but they simply aren’t viable yet. Current carbon capture technologies turn the gas into a liquid form, which is then carted away to be injected underground. However, the process requires high temperatures (which means high costs) and there are environmental concerns regarding possible leaks from storage sites.

The team’s approach, however, relies on an electrochemical technique to capture atmospheric CO2 and turn it into solid, easy to store carbon.

“To date, CO2 has only been converted into a solid at extremely high temperatures, making it industrially unviable,” Daeneke explains. “By using liquid metals as a catalyst, we’ve shown it’s possible to turn the gas back into carbon at room temperature, in a process that’s efficient and scalable.”

“While more research needs to be done, it’s a crucial first step to delivering solid storage of carbon.”

The liquid metal cerium (Ce) catalyst has certain surface properties that make it a very good electrical conductor — the current also chemically activates the catalyst’s surface.

Liquid cerium catalyst.

Schematic of the catalytic process.
Image credits Dorna Esrafilzadeh, (2019), Nature.

The whole process starts with the team dissolving carbon dioxide gas in a liquid-filled beaker and a small quantity of the liquid metal. When charged with electrical current, this catalyst slowly starts converting the CO2 into solid flakes of carbon on its surface and promptly falls off, so the process can be maintained indefinitely.

“A side benefit of the process is that the carbon can hold electrical charge, becoming a supercapacitor, so it could potentially be used as a component in future vehicles,” says Dr Dorna Esrafilzadeh, a Vice-Chancellor’s Research Fellow in RMIT’s School of Engineering and the paper’s lead author.

“The process also produces synthetic fuel as a by-product, which could also have industrial applications.”

The paper “Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces” has been published in the journal Nature.

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics