homehome Home chatchat Notifications


Scientists find hidden blood vessels inside bone

The findings might lead to new treatments for bone inflammation and tissue injuries.

Tibi Puiu
January 21, 2019 @ 6:05 pm

share Share

Trans-cortical vein canals move bone marrow cells and potentially facilitate the exchange of nutrients between the bone and the general circulation system. Credit: Nature.

Trans-cortical vein canals move bone marrow cells and potentially facilitate the exchange of nutrients between the bone and the general circulation system. Credit: Nature.

Researchers have long suspected that bones have a complex blood supply but due to limited imaging methods, it has always been challenging to prove it — until now. A research team from the University Duisburg-Essen, Germany, used modern imaging technologies showing that long bones, such as shinbones, are crossed perpendicularly by tiny canals.

The researchers use a special technique called ‘clearing’ which makes bones transparent, revealing hundreds of tiny capillaries crossing the hard outer shell of the bone of mice. Called ‘trans-cortical vessels’ (TCVs), these channels seem to play an active and crucial role in the circulatory system of rodents. This may apply to humans as well, judging from similar, thicker, canals found in human long bones — whether or not these are TCVs is to be determined.

According to a calculation performed by the team led by Matthias Gunzer, most of the blood passing through bones flow through TCVs. And this way, the researchers conclude, bone marrow is connected to a wider circulatory system throughout the body. This explains why, during an emergency, drug infusions into the bone marrow rapidly spread to the rest of the body.

The researchers also investigated whether TCVs might have a role in inflammatory and degenerative bone disorders. The authors observed that mice with acute, inflammatory arthritis had more TCVs in their bones. The TCVs were lined with endothelial cells that engage with inflammatory cells, as reported in the journal Nature.

The presence of TCVs in human bone requires confirmation, along with a direct link between TCVs and inflammatory diseases.

Since the dense vascular network facilitates the movement of bone marrow cells and nutrients — but also immune cells — they could be targeted by novel therapies. For instance, potential new treatments for bone inflammation and tissue injuries might involve drugs that regulate blood flow or cell migration through the TCVs.

share Share

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Amish Kids Almost Never Get Allergies and Scientists Finally Know Why

How Amish barns could hold the secret to preventing the onset of allergies.