homehome Home chatchat Notifications


Scientists find hidden blood vessels inside bone

The findings might lead to new treatments for bone inflammation and tissue injuries.

Tibi Puiu
January 21, 2019 @ 6:05 pm

share Share

Trans-cortical vein canals move bone marrow cells and potentially facilitate the exchange of nutrients between the bone and the general circulation system. Credit: Nature.

Trans-cortical vein canals move bone marrow cells and potentially facilitate the exchange of nutrients between the bone and the general circulation system. Credit: Nature.

Researchers have long suspected that bones have a complex blood supply but due to limited imaging methods, it has always been challenging to prove it — until now. A research team from the University Duisburg-Essen, Germany, used modern imaging technologies showing that long bones, such as shinbones, are crossed perpendicularly by tiny canals.

The researchers use a special technique called ‘clearing’ which makes bones transparent, revealing hundreds of tiny capillaries crossing the hard outer shell of the bone of mice. Called ‘trans-cortical vessels’ (TCVs), these channels seem to play an active and crucial role in the circulatory system of rodents. This may apply to humans as well, judging from similar, thicker, canals found in human long bones — whether or not these are TCVs is to be determined.

According to a calculation performed by the team led by Matthias Gunzer, most of the blood passing through bones flow through TCVs. And this way, the researchers conclude, bone marrow is connected to a wider circulatory system throughout the body. This explains why, during an emergency, drug infusions into the bone marrow rapidly spread to the rest of the body.

The researchers also investigated whether TCVs might have a role in inflammatory and degenerative bone disorders. The authors observed that mice with acute, inflammatory arthritis had more TCVs in their bones. The TCVs were lined with endothelial cells that engage with inflammatory cells, as reported in the journal Nature.

The presence of TCVs in human bone requires confirmation, along with a direct link between TCVs and inflammatory diseases.

Since the dense vascular network facilitates the movement of bone marrow cells and nutrients — but also immune cells — they could be targeted by novel therapies. For instance, potential new treatments for bone inflammation and tissue injuries might involve drugs that regulate blood flow or cell migration through the TCVs.

share Share

The Fat Around Your Thighs Might Be Affecting Your Mental Health

New research finds that where fat is stored—not just how much you have—might shape your mood.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

Tooth loss is linked to cognitive decline, study in India shows

The connection between tooth loss and cognitive decline may surprise you.

New Quantum Navigation System Promises a Backup to GPS — and It’s 50 Times More Accurate

An Australian startup’s device uses Earth's magnetic field to navigate with quantum precision.

Scientists Rediscover a Lost Piece of Female Anatomy That May Play a Crucial Role in Fertility

Scientists reexamine a forgotten structure near the ovary and discover surprising functions

Japan Plans to Beam Solar Power from Space to Earth

The Sun never sets in space — and Japan has found a way to harness this unlimited energy.

Superbugs are the latest crisis in Sub-Saharan Africa

Researchers found an alarming rise in antibiotic-resistant infections among children.

Drug Regenerates Retina and Restores Vision in Blind Mice

A protein hidden in our eyes may be the reason we can't repair lost vison.

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.

Here's why you should stop working out before bedtime

Even hours before bedtime, workouts can be a problem.