homehome Home chatchat Notifications


What makes ant teeth so super strong and sharp

Evenly spaced zinc atoms allows the ant's mandible to pack a powerful punch.

Tibi Puiu
September 6, 2021 @ 5:05 pm

share Share

Credit: Pixabay.

It’s no secret that ants are exceptionally strong and fast relative to their body size. The average ant can carry up to 50 times its own body weight and can scurry away at a rate of nearly 800 times its body length a minute. However, it’s a lesser-known fact that ants also possess super strong teeth, which they use to chomp down on their picnic loot and burrow tunnels into the soil.

Now, scientists have zoomed in on the insects’ tiny dentures using atomic-scale imaging to learn more about what makes teeth so strong and sharp. In the process, the secret they revealed could be used to develop new miniature tools.

Teeth like a scalpel

Researchers at the University of Oregon and the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) developed special techniques for measuring the hardness, elasticity, and mechanical resistance of objects at a miniature scale. The ant tooth, which is attached to an oversized mandible thinner than a strand of hair, marked the perfect occasion to test these techniques.

Materials scientist Arun Devaraj and doctoral intern Xiaoyue Wang, both from PNNL, focused an ion beam microscope on the tip of a tiny ant tooth. They used atom probe tomography to image the sample hit by the ions, allowing them to identify how individual atoms are arranged in the dental structure.

This investigation showed that the ant tooth is composed of individual atoms of zinc arranged in a specific, even pattern that ensures maximum cutting efficiency. What’s more, the structure also prevents the teeth from going dull, maintaining their sharpness throughout the insects’ lifetimes. And since the zinc atoms are distributed equally across the tooth, so is the biting force whenever the ant crunches on something relatively large, protecting its mandible.

“We could see that the zinc is uniformly distributed in the tooth, which was a surprise,” said Devaraj in a statement. “We were expecting the zinc to be clustered in nano-nodules.”

It makes sense that ants have evolved super-efficient teeth, considering they use their mandibles not only for chewing leaves and prey, but also for lifting, carrying, and defense.

According to calculations performed by Devaraj and colleagues, this structure allows the ants to use their energy much more effectively. The team estimates that, when biting, it uses only uses 60% of the force it would have needed if its teeth were made from the same materials as human teeth. This allows the ants to do more with fewer muscles. It’s likely that the same is true for other insects and crustaceans that employ similarly specialized dental tools.

Robert Schofield, associate professor at the University of Oregon and lead author of the study, believes there’s much to learn here. He has extensive experience studying steel microstructures to find the right mix of materials that enhances damage resistance, with a focus on corrosion resistance. Scofield believes biomimicking designs that take cues from the ant dentures by adding some evenly spread zinc in the material’s composition could prove useful in the future.

“The hardness of ant teeth, for example, increases from about the hardness of plastic to the hardness of aluminum when the zinc is added. While there are much harder engineering materials, they are often more brittle,” Schofield said.

Meanwhile, Devaraj and colleagues at PNNL are examining other tiny biological tools employed in the animal kingdom, from scorpion stingers to spider fangs.

The findings appeared in the journal Scientific Reports.

share Share

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.

Autism rates in the US just hit a record high of 1 in 31 children. Experts explain why it is happening

Autism rates show a steady increase but there is no simple explanation for a "supercomplex" reality.

A New Type of Rock Is Forming — and It's Made of Our Trash

At a beach in England, soda tabs, zippers, and plastic waste are turning into rock before our eyes.

A LiDAR Robot Might Just Be the Future of Small-Scale Agriculture

Robots usually love big, open fields — but most farms are small and chaotic.

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

Tardigrades just got cooler.

This underwater eruption sent gravitational ripples to the edge of the atmosphere

The colossal Tonga eruption didn’t just shake the seas — it sent shockwaves into space.

50 years later, Vietnam’s environment still bears the scars of war – and signals a dark future for Gaza and Ukraine

When the Vietnam War finally ended on April 30, 1975, it left behind a landscape scarred with environmental damage. Vast stretches of coastal mangroves, once housing rich stocks of fish and birds, lay in ruins. Forests that had boasted hundreds of species were reduced to dried-out fragments, overgrown with invasive grasses. The term “ecocide” had […]

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

Small solar farms could deliver big ecological and energy benefits, researchers find.

Plants and Vegetables Can Breathe In Microplastics Through Their Leaves and It Is Already in the Food We Eat

Leaves absorb airborne microplastics, offering a new route into the food chain.

Explorers Find a Vintage Car Aboard a WWII Shipwreck—and No One Knows How It Got There

NOAA researchers—and the internet—are on the hunt to solve the mystery of how it got there.