homehome Home chatchat Notifications


Why scientists want to engineer spicy tomatoes

I mean, who wouldn't want to try a hot tomato?

Tibi Puiu
January 10, 2019 @ 12:13 pm

share Share

It might seem odd, but spicy chili peppers and juicy tomatoes are actually related. The two plant species split off from a common ancestor nearly 19 million years ago, embarking on very different paths. Now, scientists are thinking about engineering tomatoes that are spicy for industrial applications.

Credit: Pixabay.

Credit: Pixabay.

The pungency (or heat) of chili peppers is due to capsaicinoids, which originate from the pith (a tissue in the stems of vascular plants). When you eat chili, the signature heat is not actually a taste — it’s pain. The molecules activate nerve cells in the tongue, which the brain interprets as a burning sensation. In a way, eating chili is like placing a hot object inside your mouth, without having to deal with the thermal damage.

Scientists believe that Capsicum plants evolved this ability in order to ward off predators, such as large mammals. Meanwhile, birds — which are seed dispersers and thus are of great use to chili peppers — show no pain response to capsaicin.

There are 23 different types of capsaicinoids, and some more pungent than others, depending on the environment for which the pepper is adapted for. Previous research has shown that capsaicinoid production is regulated by certain genes, and tomatoes — the distant cousin of chili peppers — also have these genes. They, however, lack the biological machinery to turn them on.

. The expression of the gene (CS) encoding capsaicinoid synthase is directly affected by irradiance, temperature, and wounding. Higher temperatures and wounding also increase this enzyme activity. Credit: Trends in Plant Science.

The expression of the gene (abbreviated CS) encoding capsaicinoid synthase is directly affected by irradiance, temperature, and wounding. Higher temperatures and wounding also increase this enzyme activity. Credit: Trends in Plant Science.

In a new study, researchers at the Federal University of Viçosa in Brazil are investigating the potential genetic pathways that could enable the harvest of spicy tomatoes.

“We have the tools powerful enough to engineer the genome of any species; the challenge is to know which gene to engineer and where,” senior author Agustin Zsögön, a plant biologist at the Federal University of Viçosa in Brazil, said in a statement.

There are very practical reasons for engineering a spicy tomato. These juicy berries are a lot easier to grow than chili and would produce more capsaicin per surface area due to the large volume of the fruiting body. Chili has been a prized commodity ever since it was discovered during the voyages of Christopher Columbus, which at the time fetched prices similar to gold. Today, capsaicin has been shown to have therapeutic and nutritional properties. For instance, the molecules can work as antibiotics and painkillers, and research suggests that the chili juice reduces inflammation in the gut and has antidepressant properties. They’re also used in pepper sprays.

Transcriptional profile of genes related to the metabolism of pungency in hot pepper, sweet pepper, and tomato. Credit: Trends in Plant Science.

Transcriptional profile of genes related to the metabolism of pungency in hot pepper, sweet pepper, and tomato. Credit: Trends in Plant Science.

In order to engineer spicy tomatoes, the researchers have identified various genes whose expression can be jump-started. One tool to achieve this is through the use of transcriptional activator-like effectors (TALEs), a suite of proteins secreted by pathogenic Xanthomonas spp. bacteria when they infect plant hosts. The second strategy is the use of genome engineering for targeted replacement of promoters.

“In theory, you could use these genes to produce capsaicinoids in the tomato,” says Zsögön. “Since we don’t have solid data about the expression patterns of the capsaicinoid pathway in the tomato fruit, we have to try alternative approaches. One is to activate candidate genes one at a time and see what happens, which compounds are produced. We are trying this and a few other things.”

While the main focus of such preliminary research is to produce more capsaicin at scale, such endeavors could also result in a new variety of produce in the grocery aisle. I mean, admit it, who wouldn’t try a hot tomato?

 

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.