homehome Home chatchat Notifications


Shark embryos stay still to avoid predators

Sharks are the ultimate predators, comfortably sitting at the very top of the food chain; but even they have their enemies (the biggest one being us, of course), especially when they’re small – nobody fears a small shark. But even in their defenseless period, sharks have managed to find a way to adapt. Australian researchers […]

Mihai Andrei
January 10, 2013 @ 4:12 am

share Share

Sharks are the ultimate predators, comfortably sitting at the very top of the food chain; but even they have their enemies (the biggest one being us, of course), especially when they’re small – nobody fears a small shark. But even in their defenseless period, sharks have managed to find a way to adapt.

Australian researchers found that the embryos know when a predator is coming by detecting its electric field, despite being confined in the small case. Sharks use jelly-filled pores on their heads called electroreceptors to recognise other animals, and especially other predators.

“Embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response,” explained Ryan Kempster, a shark biologist and member of the research team.

The embryos (of some sharks) are encased in a leathery egg shell, developing independently from their mothers, something which renders them vulnerable to several species. When the embryo starts to grow, the egg starts to open, marking the moment when outside predators can detect the embryos movement. Scientists were expecting to find some sort of adaptation to this problem, but they were surprised to see just how efficient the method really is.

shark embryo

“Despite being confined to a very small space within an egg case where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response,” says Kempster. “Knowledge of such behaviours may help us to develop effective shark repellents.”

The study was conducted on bamboo sharks, a species that grows up to 1.2m in length, most often found in the western Pacific or in the Australia-New Guinea region. The thing is, this kind of study could be very useful for humans in developing shark repellants, and also for saving sharks from being killed as by-catch in fishing nets.

Via University of Western Australia

share Share

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

Scientists are unleashing robo-rabbits to trick and trap giant invasive snakes

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

Ant-eating mammals evolved independently over a dozen times since the fall of the dinosaurs.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Just Rediscovered the World’s Smallest Snake — Thought Lost for 20 Years

A blind, worm-sized snake was hiding under a rock in Barbados all along

Aging Isn’t a Steady Descent. Around 50, the Body Seems to Hit a Cliff And Some Organs Age Much Faster Than Others

Study reveals a sharp shift in human aging — starting with the arteries.

These Dolphins Use Sea Sponges on Their Faces to Hunt and It’s More Complicated Than Anyone Thought

Dolphins in Australia pass down a quirky hunting tool that distorts their sonar but boosts their success.

Amish Kids Almost Never Get Allergies and Scientists Finally Know Why

How Amish barns could hold the secret to preventing the onset of allergies.

Surgeons Found a Way to Resuscitate Dead Hearts and It Already Saved A Baby's Life

Can we reboot the human heart? Yes, we can, and this could save many dying babies and adults who are waiting for a transplant.