homehome Home chatchat Notifications


Scientists find universal law of nature that may govern all living things

Sensory adaptation follows the same response curve across all organisms, scientists have proposed in a new study.

Tibi Puiu
October 28, 2021 @ 7:39 pm

share Share

Imagine walking out of the subway onto a busy street or going to a loud concert with flashing lights. At first, you’re highly stimulated by the roar of the bustling street or the strobe lights, but then you naturally get used to it. Without this adaptive ability, we’d all go mad, especially considering the number of stimuli we’re bombarded with on a daily basis. And it’s not just humans either. It could be that all organisms follow the same physiological adaptation curve, governed by a universal law of physiology recently uncovered by researchers at the University of Toronto.

Professor Willy Wong. Credit: Matthew Tierney / University of Toronto Engineering.

The team of researchers who came across this universal relationship of physiology was led by Prof. Willy Wong. Although the findings have huge implications for biology, Wong is actually a professor of biomedical and computer engineering. Previously, he made important contributions to brain-machine interfaces, such as devising a retinal prosthesis that restores partial vision to blind patients.

It was this work at the interface between senses and the brain that eventually led him down a rabbit hole where he noticed our response to different stimuli follows a surprisingly similar curve. And it all seems to be owed to how neurons communicate.

In order to communicate with one another, neurons fire a nerve impulse known as an action potential. This action potential, which always fires at the same intensity, is activated only once a certain threshold is reached.

“Action potentials don’t come in half measures,” says Wong. “Either you get one or you don’t. If you do, the neuron needs some time to recharge before it can fire another. In adaptation, the rate of action potential generation falls gradually to some non-zero steady state.”

In their new study, Wong and colleagues compared 250 measurements of adaptation from different fields of sensory psychology and found they all converged to a single equation. This very simple equation describes the adaptation response in all animals, from vertebrates like mammals to invertebrates like insects, and is valid for all five senses: vision, hearing, touch, taste, and smell.

The equation can be stated as the steady-state response (SS) equals the square root of the product between the activity before the application of the stimulus (SR) and the peak activity that occurs at the first presentation of the stimulus (PR). In visual format, this equation describes a curve that instantly rises when we encounter a new stimulus, but then steadily tapers off until we reach a new equilibrium.

Graph showing the idealized sensory adaptation response. Credit: Willy Wong.

The equation applies to virtually all living things, including jelliyfish, which are some of the oldest multicellular organisms.

“If you shine a light on them, they either fly to the light or away from it—but only because their photoreceptors are hardwired to their motor output,” he says. “Which raises the question, is this equation universal? In the future, if we find aliens with exobiology never seen on this planet, could they also be constrained by the same limitations or principles?”

The findings are based on data from hundreds of unrelated independent studies, which used different methods and were performed across different time periods spanning decades. Although this is by no means absolute proof, the unified nature of this research strengthens the notion that all things process stimuli according to a universal law.

“All this data was there,” says Wong, “All conformed to the same geometric mean relationship. It’s not dependent on the researcher, on what equipment was used, or on the organism. From that perspective, it is universal.”

The study was published this week in the journal Frontiers in Human Neuroscience.

share Share

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain