homehome Home chatchat Notifications


Rare genetic mutations and the fruit fly explain how Zika causes microcephaly

Researchers found that the Zika virus interrupts the growth of the brain by taking control of a pathway that regulates the generation of new neurons.

Melvin Sanicas
November 18, 2019 @ 1:42 pm

share Share

In the early part of 2016, the World Health Organization’s Emergency Committee (EC) under the International Health Regulations (2005) (IHR 2005) discussed the clusters of microcephaly and Guillain-Barré Syndrome (GBS) cases that have been temporally associated with Zika virus transmission.

Brazil, France, the United States of America, and El Salvador provided information on a potential association between microcephaly and other neurological disorders with Zika virus. The recent cluster of microcephaly cases was considered a Public Health Emergency of International Concern (PHEIC). Several months later, the WHO confirmed in a scientific consensus that the Zika virus is linked with microcephaly as well as Guillain-Barré syndrome.

Three years and several studies later, researchers at Baylor College of Medicine revealed one way how in utero Zika virus infection can lead to microcephaly in newborns. The team discovered that the Zika virus protein NS4A interrupts the growth of the brain by taking control of a pathway that regulates the generation of new neurons.

Rare genetic mutations helped explain how Zika causes microcephaly

Zika virus protein NS4A interacts with ANKLE2, a protein linked to hereditary microcephaly.

“The current study was initiated when a patient presented with a small brain size at birth and severe abnormalities in brain structures at the Baylor Hopkins Center for Mendelian Genomics (CMG),” said Dr. Hugo Bellen, professor at Baylor, investigator at the Howard Hughes Medical Institute and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital.

This patient and others in a cohort at CMG had not been infected by Zika virus in utero. They had a genetic defect that caused microcephaly. CMG scientists determined that the ANKLE2 gene was associated with the condition.

Several years ago, Dr. Bellen and colleagues discovered in the fruit fly model that the ANKLE2 gene was associated with neurodevelopmental disorders. In a subsequent fruit fly study, the researchers demonstrated that overexpression of Zika protein NS4A causes microcephaly in the flies by inhibiting the function of ANKLE2, a cell cycle regulator that acts by suppressing the activity of VRK1 protein. Since very little is known about the role of ANKLE2 or VRK1 in brain development, Bellen and his colleagues applied a multidisciplinary approach to tease apart the exact mechanism underlying ANKLE2-associated microcephaly.

The fruit fly helps clarify the mystery

This image shows the two lobes of the brain of a fruit fly larva with hundreds of neurons, colored green, and stem cells, colored magenta. 

To figure out how Ankle2 mutations were influencing brain formation, the researchers went back to flies. Normally, Ankle2 works with a series of other genes to control the division of neuroblasts — stem cells that give rise to neurons. These cells are crucial for proper brain development.

Mutations in the Ankle2 gene, though, messed with neuroblast division. Larval flies with the mutation had fewer neuroblasts and smaller-than-expected brains. Further analyses revealed more details about how Ankle2 regulates asymmetric neuroblast division. They found that Ankle2 protein interacts with VRK1 kinases, and that Ankle2 mutants alter this interaction in ways that disrupt asymmetric cell division.

The Zika connection

In the future, a drug that protects this protein could stop Zika’s damaging developmental effects, says Dr. Hugo Bellen.

“For decades, researchers have been unsuccessful in finding experimental evidence between defects in asymmetric cell divisions and microcephaly in vertebrate models. The current work makes a giant leap in that direction and provides strong evidence that links a single evolutionarily conserved Ankle2/VRK1 pathway as a regulator of asymmetric division of neuroblasts and microcephaly. Moreover, it shows that irrespective of the nature of the initial triggering event, whether it is a Zika virus infection or congenital mutations, the microcephaly converges on the disruption of Ankle2 and VRK1, making them promising drug targets.”

share Share

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

Aging Isn’t a Steady Descent. Around 50, the Body Seems to Hit a Cliff And Some Organs Age Much Faster Than Others

Study reveals a sharp shift in human aging — starting with the arteries.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.