homehome Home chatchat Notifications


When the octopus and squid lost their shells

Squishy animals like the octopus or squid used to have hard internal shells up until 100 million years ago.

Tibi Puiu
March 2, 2017 @ 3:40 pm

share Share

Exceptionally well preserved fossil of Belemnoteuthis antiquus from 166 million years ago. These ancient cephalopods with their large internal shell were not as fast as their recently evolved relatives. Credit: Jonathan Jackson and Zoë Hughes, NHMUK.

Exceptionally well-preserved fossil of Belemnoteuthis antiquus from 166 million years ago. These ancient cephalopods with their large internal shell were not as fast as their recently evolved relatives. Credit: Jonathan Jackson and Zoë Hughes, NHMUK.

It’s hard to believe it but today’s squishy creatures like octopuses or squids used to have a shell. Unfortunately, being soft-bodied means these animals rarely leave anything behind after they pass which makes tracking their lineage exceptionally difficult. But using a combination of genetic sequencing and fossil remains — few but valuable — researchers at the University of Bristol in the United Kingdom were able to establish when the cephalopods’ last shelled ancestors used to live. According to the results, squids and octopuses lost their shell during the Jurassic and Cretaceous periods.

According to lead researcher Jakov Vinther, a paleobiologist at the University of Bristol, cephalopod ancestors started losing their shells around the Mesozoic Marine Revolution, which was one most important faunal changes in life’s history. Because of pressure from extremely adapted Mesozoic marine predators, many marine invertebrates had to develop new defenses or risk becoming wiped out. This meant ditching the shell which made it difficult to get away in the face of threats.

“On land this was the time of the dinosaurs, but beneath the seas, ecologies were changing rapidly. Fish, squid and their predators were locked in evolutionary ‘arms-races’, leading to increasingly speedy and agile predators and prey,” said Al Tanner, a PhD student at the University of Bristol’s School of Biological Sciences.

What Vinther and colleagues found was a clear demise of the number of squid and octopus ancestors which had heavy internal shells beginning with 160 million years ago. Up until 100 million years ago, some of these cephalopod ancestors gradually lost their hard shells in favor of more squishy body parts familiar today which helped the animals both catch prey and evade predators easier.

“By having a reduced internal skeleton compared to their ancient relatives, the modern squids and octopuses could compress their body and more efficiently jet away leaving a baffling cloud of ink with the attacking predator. Before the predator realises what has happened and gains clear view again, the squid is far out of sight,” Vinther said.

The key to these findings was a genetic technique that enabled the researchers to build a timeline of different cephalopod ancestor branching in the family tree. After the molecular clock results were compared to fossil records,  the two converged to paint the story of when squids and octopuses lost their shells.

“The key element of molecular clocks though is the fact that mutations steadily accumulate in genetic material over time – so by figuring out how many mutations per million years you find, and how it may vary between different groups, we can estimate evolutionary time,” said Professor Davide Pisan, co-author of the new paper published in Proceedings of the Royal Society B: Biological Sciences.

share Share

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

Mysterious red dots may be a peculiar cosmic hybrid between a star and a black hole.

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

Peacock tail feathers infused with dye emit laser light under pulsed illumination.

Helsinki went a full year without a traffic death. How did they do it?

Nordic capitals keep showing how we can eliminate traffic fatalities.

Scientists Find Hidden Clues in The Alexander Mosaic. Its 2 Million Tiny Stones Came From All Over the Ancient World

One of the most famous artworks of the ancient world reads almost like a map of the Roman Empire's power.

Ancient bling: Romans May Have Worn a 450-Million-Year-Old Sea Fossil as a Pendant

Before fossils were science, they were symbols of magic, mystery, and power.

These wolves in Alaska ate all the deer. Then, they did something unexpected

Wolves on an Alaskan island are showing a remarkable adaptation.

This AI Therapy App Told a Suicidal User How to Die While Trying to Mimic Empathy

You really shouldn't use a chatbot for therapy.

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

Why You Should Stop Using Scented Candles—For Good

They're seriously not good for you.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.