homehome Home chatchat Notifications


Some mushrooms can squeeze through tiny spaces, but they need to make sacrifices

The fastest-growing mushrooms can't do it, just the more resilient ones.

Mihai Andrei
March 16, 2021 @ 2:52 pm

share Share

Mushrooms (or to be more precise, fungi) can sometimes fit into the tiniest of places. We’re not talking tiny cracks or fissures — the filaments of some fungi can creep in between plant and animal cells. But only the ones that grow slowly can do it.

Not all mushrooms can squeeze into tight spaces. Image credits: Andrew Ridley / Unsplash.

Fungi are nature’s recycling system. Neither plants nor animals, fungi can break down organic materials — but they can also cause a lot of problems for other organisms by infecting them. Part of the reason that makes fungi so dangerous is that they can penetrate the spaces between tightly-connected plant or animal cells.

They do this with their hyphae (the branching filaments that create a large network called a mycelium) but only some species seem to have this squeezing ability. To figure out why this is and how it happens, a team led by Professor Norio Takeshita at the University of Tsukuba, with collaborators at Nagoya University and in Mexico, compared seven fungi from different taxonomic groups.

They set up a clever design, where the fungi had to respond to an obstruction that forced them to pass through very narrow channels of about 1 micron wide. This width is narrower than the typical diameter of the hyphae, which is usually 2-5 microns.

“Since the channels are much narrower than the diameter of hyphae, the hyphae must change its morphology when they grow through the channels,” the study authors write.

For some species, it wasn’t much of an issue: they just kept on growing through the narrow opening and on the other side without showing much change. But for others, this was a big problem — they either stopped growing or grew at a much slower rate. After they emerged on the other side, they were still affected. They would sometimes develop a swollen tip and change their direction of growth, struggling to get past the obstacle.

Hyphae growing through a narrow opening. Image credits: University of Tsukuba.

Remarkably, the tendency to slow down growth didn’t seem to be affected by the diameter of the hyphae, and closely-related fungi seemed to behave in different ways, so it’s not clear exactly what directs different behavior.

However, when researchers injected fluorescent dyes in living fungi, they noticed that when hyphae struggled to get through the narrow openings, their cellular processes started to malfunction. For instance, the vesicles that supply the lipids and proteins needed for hyphae growth were no longer organized.

The team also found that species with faster growth rates and higher pressure within the cell were more prone to disruption. In other words, some fungi give up on resilience in favor of faster growth.

“For the first time, we have shown that there appears to be a trade-off between cell plasticity and growth rate,” says Professor Takeshita. “When a fast-growing hypha passes through a narrow channel, a massive number of vesicles congregate at the point of constriction, rather than passing along to the growing tip. This results in depolarized growth: the tip swells when it exits the channel, and no longer extends. In contrast, a slower growth rate allows hyphae to maintain correct positioning of the cell polarity machinery, permitting growth to continue through the confined space.”

This study could have application in biotechnology as well as in medicine, as it could enable doctors to develop better anti-fungal treatments.

“This is the first report indicating a trade-off between plasticity and velocity in mycelial growth, and serves to understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology and pathogenicity,” the researchers conclude

The article “Trade-off between plasticity and velocity in mycelial growth”, was recently published in mBio at doi.org/10.1128/mBio.03196-20

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.