homehome Home chatchat Notifications


New, different type of life could be living in our guts

In recent years, we’re finding out more and more that our guts are actually an impressive ecosystem, influencing not only how we digest our food, but also how we think and behave. But now, researchers have taken it even one step further: we may need to define a whole new life form to describe these […]

Mihai Andrei
November 16, 2015 @ 11:54 am

share Share

In recent years, we’re finding out more and more that our guts are actually an impressive ecosystem, influencing not only how we digest our food, but also how we think and behave. But now, researchers have taken it even one step further: we may need to define a whole new life form to describe these tiny residents.

Fecal bacteria. Image via Wikipedia.

The whole digestive tract is about nine metres (30 feet) long, and it’s quite a unique environment, especially in terms of biochemistry; this uniqueness generated some rather strange relationships. Not only do microorganisms live in our stomach and they can help us digest food better, but they can even affect how we think. Previous studies have suggested gut bacteria may communicate directly with the brain. Notably, some people with liver disease experience positive mental ability change after given antibiotics. But as if that wasn’t enough, a team from the Pierre and Marie Curie University in Paris, France reported that they found DNA sequences in these microorganisms that are beyond the three forms of life that we currently know of.

Basically, the three domain system divides cellular life forms into archaea, bacteria, and eukaryote domains. Archaea are somewhat similar to bacteria, but they have a different biochemical system and can survive in more extreme environments, bacteria are well… bacteria, and eukaryote is everything else: fungi, plants and animals. Now, it’s important not to get ahead of ourselves, but if their study is correct, then we may have to re-think the complexity of our gut system, which makes its interaction with the rest of our body even harder to understand.

Researchers analyzed 230,000 DNA sequences that are related to known sequences in those 86 gene families, using these sequences as a starting point for their next analysis, through which they found an additional 80,000 stretches of microbial DNA that belonged in the 86 gene families. But in one third of this DNA, the structure was very strange, not belonging to any known domain of life. All in all, 40% of the DNA was previously unknown, a high enough figure to justify thinking about a new domain of life.

“Given that archaeal and bacterial homologs shared at least 60 % sequence identity, any environmental homologs of these gene families presenting > 40 % divergence (i.e., <60 % identity) would be more divergent from its homologs than sequences from two distinct domains of life. Such a high divergence, for these families, deserves to be considered significant, possibly hinting at very divergent organismal lineages, and/or reflecting a major genetic plasticity for these functionally important, apparently ancient gene families.”

But before this is actually confirmed, researchers have to isolate and study these organisms in a lab environment, which of course, is no easy feat.

“These results underline how limited our understanding of the most diverse elements of the microbial world remains, and encourage a deeper exploration of natural communities and their genetic resources, hinting at the possibility that still unknown yet major divisions of life have yet to be discovered,” concludes the report.

Journal Reference: Philippe Lopez, Sébastien Halary and Eric Bapteste – Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life. Biology Direct 2015, 10:64 doi:10.1186/s13062-015-0092-3

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.