homehome Home chatchat Notifications


Dragonflies hunt prey like dancing a ballet, similar to the internal model used by humans

Arguably the most efficient predator in the world today is the dragonfly, which boats a 95% success rate. Obviously, there’s more to the dragonfly than meets the eye or more than you would expect from some random insect, at least. One of the reasons it’s so successful may be due to how the dragonfly moves […]

Tibi Puiu
December 11, 2014 @ 6:55 pm

share Share

Arguably the most efficient predator in the world today is the dragonfly, which boats a 95% success rate. Obviously, there’s more to the dragonfly than meets the eye or more than you would expect from some random insect, at least. One of the reasons it’s so successful may be due to how the dragonfly moves in response to its prey, guided by an internal model similar to that used by us humans. In effect, the dragonfly performs complex calculations that include both the prey’s current position and predictions of its future position.

An exciting choreography

Composite image of dragonfly carrying retroreflective markers. The markers are used to measure the orientation of the dragonfly’s head and body during flight. The data from the measurements allows the underlying steering strategy to be inferred. Credit: Igor Siwanowicz, Leonardo Lab, HHMI/Janelia Research Campus

Composite image of dragonfly carrying retroreflective markers. The markers are used to measure the orientation of the dragonfly’s head and body during flight. The data from the measurements allows the underlying steering strategy to be inferred. Credit: Igor Siwanowicz, Leonardo Lab, HHMI/Janelia Research Campus

 

The dragonfly only needs half a second from the moment it first sees an unsuspecting prey until it finally swaps it up from beneath (this is how the dragonfly always operates to avoid being seen). Biologists knew the dragonfly is an efficient, and awesome I might add, hunter but the complexities of its behavior escaped them. According to scientists at  Howard Hughes Medical Institute’s Janelia Research Campus, dragonflies on the hunt perform internal calculations every bit as complex as those of a ballet dancer.

You might be surprised to know what great deal of effort and how billions of computations are made automatically by your brain every second just to pick up… a cup of coffee.

“You have an internal model of how your arm works, how the joints are articulated, of the cup and its mass. If the cup is filled with coffee, you incorporate that,” Janelia group leader Anthony Leonardo explains. “Articulating a body and moving it through space is a very complicated problem.”

For many years, Leonardo has been studying how the nervous system triggers actions in response to environmental stimuli, like when an animal quickly enters escape mode when it senses it’s been hunted. Dragonflies are particularly appealing for his research because he wants to know  whether the same stimulus-response loops  underlie more complex behaviors.

“The idea was the dragonfly roughly knows where the prey is relative to him, and he tries to hold this angle constant as he moves toward the interception point. This is the way guided missiles work and how people catch footballs,” Leonardo says. But there was reason to believe prey capture was more complicated.

“You don’t need a spectacularly complicated model to guess where the prey will be a short time in the future,” he says. “But how do you maneuver your body to reach the point of contact?”

The dragonfly doesn't only have a fantastic response time during attack. It's well suited for escape too, leaving predators with their tongues hanging.

The dragonfly doesn’t only have a fantastic response time during attack. It’s well suited for escape too, leaving predators with their tongues hanging.

But how do you keep up with such a fast and tiny predator? Inspired by the same techniques used in the movie business to translate the movements of actors into 3D animations, the researchers placed reflective markers on key articulated areas of the dragonfly – the head, body, and wings. A high speed cameras recorded the reflected flashes as the dragonfly  chased after either a fruit fly or an artificial prey – a bead maneuvered by a pulley system. The positions of the body and head were most revealing.

dragonfly

Take #2.

It was soon clear that the dragonfly wasn’t only responding to its prey’s movements; it also made structured turns that adjusted the orientation of its body, even when the prey trajectory didn’t change.

“Those turns were driven by the dragonfly’s internal representation of its body and the knowledge that it has to rotate its body and line it up to the prey’s flight path in a particular way,” Leonardo says.

These shifts are aimed to disorientate its prey, yet during this whole process the dragonfly never loses sight of its target. Surprisingly, the scientists found that each dragonfly moved its head to keep the image of its prey centered on the eye, despite the rotation of its own body.

“The dragonfly is making a lot of turns to line itself up. Those turns create a lot of apparent prey motion. If the whole world is going to spin, how can it possibly see its prey?” Leonardo asks.


Leonardo says the movements his team observed are so fine-tuned that they keep the image of the prey fixed in the crosshairs of the dragonfly’s eyes—their area of greatest acuity—during the duration of the chase. That allows the dragonfly to receive two channels of information about its prey, Leonardo says. The angle between the head and the body tracks the predicted movement of the prey, while the visual system detects any unexpected movement when the prey strays from its position in the crosshairs.

“It gives the dragonfly a very elegant combination of predicted model-driven control and the original reactive control,” he says.

Findings appeared in Nature.

 

share Share

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Archaeologists May Have Found Odysseus’ Sanctuary on Ithaca

A new discovery ties myth to place, revealing centuries of cult worship and civic ritual.

The World’s Largest Sand Battery Just Went Online in Finland. It could change renewable energy

This sand battery system can store 1,000 megawatt-hours of heat for weeks at a time.

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.