homehome Home chatchat Notifications


Book-sized biological supercomputer is powered by ATP

A revolutionary new supercomputer powered by Adenosine triphosphate (ATP), the energy source for every living cell in your body, is ridiculously small and much more efficient than a traditional supercomputer. That's because instead of electricity, this computer is powered by biological agents. This means it needs little to any cooling, and can be scaled to the size of a book.

Tibi Puiu
March 3, 2016 @ 4:46 pm

share Share

A revolutionary new supercomputer powered by  Adenosine triphosphate (ATP), the energy source for every living cell in your body, is ridiculously small and much more efficient than a traditional supercomputer. That’s because instead of electricity, this computer is powered by biological agents. This means it needs little to any cooling, and can be scaled to the size of a book.

The breakthrough was made by a team led by Prof. Nicolau, the Chair of the Department of Bioengineering at McGill, in collaboration with researchers from Germany, Sweden and Holland.

“We’ve managed to create a very complex network in a very small area,” says Dan Nicolau, Sr. with a laugh. He began working on the idea with his son, Dan Jr., more than a decade ago and was then joined by colleagues from Germany, Sweden and The Netherlands, some 7 years ago. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes.”

Today, supercomputers can be as big as a warehouse and cost in the range of hundreds of millions of dollars. They also suck a lot of energy, which seems to run directly counter to calls for energy efficiency and conservation. The National Security Agency, for example, has created a mammoth 1.2 million square foot facility in the deserts of Utah that cost at least $1.5 billion and consumes 65 MW of power and 1.7 million gallons of water per day. But are they worth it? You bet.

The biochip is like a busy city. Image: PNAS

The biochip is like a busy city. Image: PNAS

All those silicon powerhouses work in tandem, processing data in parallel computations. Some operations might take your computer years to make, but only minutes on a supercomputer. Take the simulations of the interactions between 64 million atoms that form the HIV capsid, the protein shell that protects the virus’ genetic material. The computations required are simply staggering, but once complete scientists could discover how atoms work together to protect the HIV genetic material. Then you can design drugs, probably modeled using the same supercomputer, that interfere with that cooperation, and the virus can then be neutralized. This process could be significantly streamlined by a biological computer, if it can ever be fully scaled.

Stripped to its bear essence, the biological supercomputer looks like the road map of a busy city, where vehicles of different sizes and power move along designated roads (channels). In this case, the city is a 1.5 cm square chip with etched channel through which short string of proteins, not electrons, zip past. This movement is powered by the chemical ATP — the juice of life. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes,” Nicolau said.

This circuit was used to solve  a complex classical mathematical problem by using parallel computing of the kind used by supercomputers. Of course, its capabilities are light years away from a conventional supercomputer. These are just the first baby steps, though. Moreover, Nicolau reckons some very interesting things could happen if you combine the two — biological and conventional computing — in a hybrid model. “Right now we’re working on a variety of ways to push the research further.”

Findings appeared in PNAS.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.