homehome Home chatchat Notifications


Hot-spring bacteria can make photosynthesis using far-red light

Bacteria living in obscure environments use an extremely rare process to harvest energy and produce oxygen from sunlight – but they don’t use visible light, they use far-red light. “We have shown that some cyanobacteria, also called blue-green algae, can grow in far-red wavelengths of light, a range not seen well by most humans,” said Donald […]

Mihai Andrei
August 26, 2014 @ 8:25 am

share Share

Bacteria living in obscure environments use an extremely rare process to harvest energy and produce oxygen from sunlight – but they don’t use visible light, they use far-red light.

Image via Penn State.

“We have shown that some cyanobacteria, also called blue-green algae, can grow in far-red wavelengths of light, a range not seen well by most humans,” said Donald A. Bryant, the Ernest C. Pollard Professor of Biotechnology and professor of biochemistry and molecular biology at Penn State. “Most cyanobacteria can’t ‘see’ this light either. But we have found a new subgroup that can absorb and use it, and we have discovered some of the surprising ways they manipulate their genes in order to grow using only these wavelengths,” he said.

Far-red light is light at the extreme red end of the visible spectrum, between red and infra-red light. Usually regarded as the region between 710 and 850 nm wavelength, it is dimly visible to some eyes. Up until recently, it was thought that no organisms can use far-red light for photosynthesis, but in 2009, a different research team found a unique microbe in California’s largest lake. Now, the Penn State researchers discovered that the cyanobacterial strain, named Leptolyngbya, completely changes its photosynthetic apparatus in order to use far-red light. Basically, they can turn on a large number of genes and simultaneously turn other genes off when they need this type of photosynthesis, and the reverse process when they don’t. Because the genes that are turned on are the genes that determine which proteins the organism will produce, this massive remodeling of the available gene profile has a dramatic effect on the entire organism.

“It changes the core components of the three major photosynthetic complexes, so one ends up with a very differentiated cell that is then capable of growing in far-red light. The impact is that they are better than other strains of cyanobacteria at producing oxygen in far-red light, and they are better even than themselves. Cells grown in far-red light produce 40 percent more oxygen when assayed in far-red light than cells grown in red light assayed under the same far-red light conditions.”

This photo shows the colors of the cells of the cyanobacterium Leptolyngbya sp. strain (JSC-1), which was collected from a hot spring near Yellowstone National Park. The cells were grown in white fluorescent light (WL), green-filtered fluorescent light (GL), red light provided by 645-nm LEDs, or far-red light provided by 710-nm LEDs.

The bacteria sample was taken from the LaDuke hot spring in Montana, close to Yellowstone Park. The bacteria was living under a 2-milimeter-thick mat so thick that visible light couldn’t even get to it – only far-red light reaches it. Understanding this type of photosynthesis may actually be extremely important, because surface crusts of deserts and other soils under which this cyanobacteria might live cover a significant part of the Earth.

“It is important to understand how this photosynthetic process works in global-scale environments where cyanobacteria may be photosynthesizing with far-red light, in order to more fully understand the global impact of photosynthesis in oxygen production, carbon fixation, and other events that drive geochemical processes on our planet,” Bryant said.

The research also sheds some light on how photosynthesis in the far-red light. Bryant explains:

 “Our research already has shown that it would not be enough to insert a new far-red-light-absorbing pigment into a plant unless you also have the right protein scaffolds to bind it so that it will work efficiently.  In fact, it could be quite deleterious to just start sticking long-wavelength-absorbing chlorophylls into the photosynthetic apparatus,” he said.

 

share Share

A Hidden Staircase in a French Church Just Led Archaeologists Into the Middle Ages

They pulled up a church floor and found a staircase that led to 1500 years of history.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.