homehome Home chatchat Notifications


Betelgeuse is getting dimmer -- but will it explode soon?

One of the brightest stars in the night's sky is getting dimmer and changing shape.

Tibi Puiu
February 17, 2020 @ 10:27 pm

share Share

This comparison image shows the star Betelgeuse before and after its unprecedented dimming. Credit: ESO/M. Montargès et al.

The 10-million-year-old star — a mere juvenile by stellar standards considering the Sun is 4.6 billion years old — is around 20 times more massive than the Sun and around 900 times larger. Virtually all red supergiants like Betelgeuse are destined to live fast and die young, eventually meeting their end in a supernova — the most powerful and luminous explosions known in astronomy.

Betelgeuse is a variable star, so it’s normal for it to get dimmer and brighter, but recent observations have been extremely surprising.

Astronomers operating ESO’s Very Large Telescope have found that since December of last year, Betelgeuse is now around 64% dimmer than its usual brightness.

On a normal day, Betelgeuse is the 11th brightest star in the sky, part of the Orion constellation. Today, it’s only the 24th brightest star.

These observations were made with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. This is one of the most advanced and exciting astronomical instruments equipped on an Earth-based observatory. SPHERE allows scientists to see the polarized infrared light emitted by newly forming planets (essentially just planetary disks at this point) orbiting around young stars. Apparently, it’s also sharp enough to capture extremely high-resolution pictures of Betelgeuse.

Because Betelgeuse is only 650 light-years away, and because it’s so large, astronomers were able to reveal certain features that would have otherwise been obscured, including convection cells, or granules. These are huge blobs of hot gas that have migrated from deep inside the core of the star to the surface.

The new images of Betelgeuse suggest that it has not only dimmed considerably, it also changed its shape.

Dimming red giants are believed to be a sign that they are about to imminently turn supernova.

If Betelgeuse truly was about to explode, it would be the brightest supernova ever observed in our galaxy. I’d be so brilliant that it would make it difficult to see other stars near it.

A direct-sky image of Betelgeuse. Credit: ESO/Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

But while it’s possible that the star could explode anytime between this moment and 100,000 years from now, this dimming might not actually be a sign that it’s about to go supernova.

Artist’s impression of the supergiant star Betelgeuse. The scale in units of the radius of Betelgeuse, as well as a comparison with the Solar System, is also provided. Credit:
ESO/L. Calçada.

According to one theory, the red giant is currently undergoing a period of activity as it pulsates and as heat travels around its surface. Convection cells as big as 60% of the entire star’s size could be dimming Betelgeuse temporarily. Another explanation is that the star belched out a cloud of dust that has partially obscured our field of view.

“The two scenarios we are working on are a cooling of the surface due to exceptional stellar activity or dust ejection towards us,” said Miguel Montargès, an astronomer at KU Leuven in Belgium and the leader of the team responsible for the new observations. “Of course, our knowledge of red supergiants remains incomplete, and this is still a work in progress, so a surprise can still happen.”

So, the bottom line is that we don’t know if Betelgeuse is going to explode soon. Which is too bad — it would be quite the show if it happened during our lifetimes.

“The phrase ‘we are all made of stardust’ is one we hear a lot in popular astronomy, but where exactly does this dust come from?” says Emily Cannon, a PhD student at KU Leuven working with SPHERE images of red supergiants. “Over their lifetimes, red supergiants like Betelgeuse create and eject vast amounts of material even before they explode as supernovae. Modern technology has enabled us to study these objects, hundreds of light-years away, in unprecedented detail giving us the opportunity to unravel the mystery of what triggers their mass loss.”

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

We still know very little about our oceans. Can jellyfish change that?

Can AI help us reduce hiring bias? It's possible, but it needs healthy human values around it

AI may promise fairer hiring, but new research shows it only reduces bias when paired with the right human judgment and diversity safeguards.

Hidden for over a century, a preserved Tasmanian Tiger head "found in a bucket" may bring the lost species back from extinction

Researchers recover vital RNA from Tasmanian tiger, pushing de-extinction closer to reality.

Island Nation Tuvalu Set to Become the First Country Lost to Climate Change. More Than 80% of the Population Apply to Relocate to Australia Under World's First 'Climate Visa'

Tuvalu will likely become the first nation to vanish because of climate change.

Archaeologists Discover 6,000 Year Old "Victory Pits" That Featured Mass Graves, Severed Limbs, and Torture

Ancient times weren't peaceful by any means.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

A 5,000-Year-Old Cow Tooth Just Changed What We Know About Stonehenge

An ancient tooth reshapes what we know about the monument’s beginnings.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.