homehome Home chatchat Notifications


We're closer to understanding how autistic brains process faces differently, thanks to artificial intelligence

We can't dissect a living brain to understand how it works -- but we can do it with a computer.

Alexandru Micu
June 21, 2022 @ 12:43 am

share Share

New research could help us understand how the brains of autistic people have a harder time recognizing emotions in facial expressions.

Image via Pixabay.

Facial expressions are one of the most important ways that people convey their emotions to those around them. Smiles are a good indicator of happiness; eye-rolls are a pretty reliable sign that someone is becoming frustrated. Autistic people, however, can have a difficult time actually picking up on these displays.

We don’t really know why this is. New research focusing on artificial intelligence could help us finally find out why.

Inner workings of the brain

As far as we know, there are two brain areas that may explain where the differences in processing between the typical and autistic brains reside. One of them is the inferior temporal (IT) cortex, which handles facial recognition. Another is the amygdala, which takes in information from the IT cortex and interprets the emotional content of the expressions it perceives.

In order to understand to what extent these two areas are involved in the differences in processing, Kohitij Kar, a research scientist in the lab of MIT Professor James DiCarlo drew on previous research. One of the studies he investigated involved showing the images of faces to autistic adults and neurotypical controls. These images were generated by software that imparted them with different levels of happiness or fear; the participants were asked to judge if each face expressed happiness. Compared to the controls, autistic adults required higher levels of happiness in the faces in order to correctly perceive it.

The other study he drew upon involved the recording of neuronal activity in the amygdalas of people undergoing surgery for epilepsy, while they performed the face task. This paper reported that a patient’s neural activity could be used to predict their judgment on each face.

For the study itself, Kar created an artificial neural network, a computer system that mimics the architecture of our brains, and is organized in several layers of computation. It trained it to perform the same tasks. The network’s behavior on the emotion-recognition task was very similar to that of the neurotypical controls. Then, Kar set about dissecting it to understand how it performed its job, and to find clues as to why autistic adults interpret emotion in facial expressions differently from neurotypical individuals.

First, he reports that the network’s responses could be made to most closely resemble those of autistic participants when its output was based on the last layer of the network. This layer most closely mimics the IT cortex and sits at the end of the visual processing pipeline in primates, he explains, citing previous research.

Secondly, Kar looked at the role of the amygdala. Working with the previously-recorded data and accounting for it in the output of its network, in which the effect of the IT cortex had already been quantified. This showed that the amygdala has a very small effect on its own. Together, these two findings point to the IT cortex being heavily involved in the differences between neurotypical controls and autistic adults.

He further explains that his network could help in selecting images that would be more efficient for the purposes of diagnosing autism.

“These are promising results,” Kar says. Better methods will surely be developed “but oftentimes in the clinic, we don’t need to wait for the absolute best product.”

To validate the findings, he trained separate neural networks to match the choices of neurotypical controls and autistic adults. For each, he quantified how strong the connections between the final layers and the decisional nodes were; those in the ‘autistic network’ were weaker than in the network matching neurotypical responses. This, he explains, points to the neural connections that interpret sensory data being more ‘noisy’ in autistic adults.

Such a view was further reinforced by Kar adding various levels of fluctuation (‘noise’) in the workings of the final layer of the network modeling autistic adults. Within a certain range, this added noise greatly increased how closely the network’s responses matched those of autistic adults. Adding it to the control network had a much weaker effect in aligning its answers to those of neurotypical adults.

Although they are based on the workings of computers, the findings strongly point us toward answers regarding the differences between data processing in neurotypical and autistic brains.

The paper “A computational probe into the behavioral and neural markers of atypical facial emotion processing in autism” has been published in The Journal of Neuroscience.

share Share

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.

Wild Orcas Are Offering Fish to Humans and Scientists Say They May Be Trying to Bond with Us

Scientists recorded 34 times orcas offered prey to humans over 20 years.

No Mercury, No Cyanide: This is the Safest and Greenest Way to Recover Gold from E-waste

A pool cleaner and a spongy polymer can turn used and discarded electronic items into a treasure trove of gold.

This $10 Hack Can Transform Old Smartphones Into a Tiny Data Center

The throwaway culture is harming our planet. One solution is repurposing billions of used smartphones.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

More Than Half of Intersection Crashes Involve Left Turns. Is It Time To Finally Ban Them?

Even though research supports the change, most cities have been slow to ban left turns at even the most congested intersections.

A London Dentist Just Cracked a Geometric Code in Leonardo’s Vitruvian Man

A hidden triangle in the vitruvian man could finally explain one of da Vinci's greatest works.

The Story Behind This Female Pharaoh's Broken Statues Is Way Weirder Than We Thought

New study reveals the ancient Egyptian's odd way of retiring a pharaoh.

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.