homehome Home chatchat Notifications


We now know the largest spinning objects in the universe

Welcome to the world of spinning cosmic filaments.

Paula Ferreira
June 18, 2021 @ 10:43 am

share Share

Many things in the universe spin, at pretty much every scale you can imagine — from particles in the quantum scale to hurricanes and 0f course, planets and stars. However, this physical phenomenon is not well-explored on the cosmic scale — at the megaparsec scale, we’re not really sure how what spins. 

In a study published in Nature Astronomy, physicists used data from Sloan Digital Sky Server’s to test an idea: what if galaxy filaments, the largest known structures in the universe, consisting of massive galaxy superclusters, are actually spinning?

Galaxy filaments. Image credits: NASA.

It may sound weird to think that galaxies as a whole are moving — let alone spinning. They do move with respect to the universe’s expansion, and also on a smaller scale. We know our galactic neighborhood, some galaxies are mere satellites compared to their “mother” galaxy, like our Milky Way. We live in the Laniakea supercluster, where our big family is being pulled by the Great Attractor, the densest region of the cluster.

We can only observe some parts of the universe, due to our position in the universe and in the Solar System. In a way, we are too small to see the great vastness of the universe. So the filaments we can observe are seen in the parts of the sky visible from our cosmic neighborhood.

To compensate for this, astronomers also study such processes using computer simulations. The most famous such simulation of the Universe’s large-scale structure is called the Millennium Simulation — which used more than 10 billion particles to trace the evolution of the matter distribution in a cubic region of the Universe over 2 billion light-years on a side. The Millennium Simulation shows the dark matter distribution across the universe, forming a cosmic web interconnecting more than 10 billion particles. It is good to imagine what the big picture looks like.

The SDSS map of the Universe. Each dot is a galaxy; the color bar shows the local density. Credits: SDSS. 

In a recent study, researchers looked at the rotation movement of galaxy filaments — “bridges” that connect the cosmic web, connecting galaxies to each other.

“By mapping the motion of galaxies in these huge cosmic superhighways using the Sloan Digital Sky survey—a survey of hundreds of thousands of galaxies—we found a remarkable property of these filaments: they spin,” says Peng Wang, first author of the now published study and astronomer at the AIP.

Wang and colleagues looked at the galaxy filament cylinders which are horizontal compared to our position. They separated the cylinders into two regions to distinguish whether galaxies are coming away from us, in region A, or towards us, in region B. If that’s a simultaneous event the rectangle is actually the cylinder showing the rotation of the structure. Indeed, these structures appear to be rotating.

“Despite being thin cylinders—similar in dimension to pencils—hundreds of millions of light-years long, but just a few million light-years in diameter, these fantastic tendrils of matter rotate. On these scales, the galaxies within them are themselves just specks of dust. They move on helixes, or corkscrew-like orbits, circling around the middle of the filament while traveling along with it. Such a spin has never been seen before on such enormous scales, and the implication is that there must be an as-yet-unknown physical mechanism responsible for torquing these objects,” says Noam Libeskind, initiator of the project at the AIP.

The rotation is like a helix — the galaxies not only rotate around the axis, but they also move along the cylinders. It was estimated that filaments that contain more massive galaxy clusters at the end of the filament tend to have stronger rotational signals than those less massive. That is an important observation because it makes the hypothesis distinguishable to the universe’s expansion.

Artist’s impression of cosmic filaments: huge bridges of galaxies and dark matter connect clusters of galaxies to each other. Galaxies are funnelled on corkscrew like orbits towards and into large clusters that sit at their ends. Their light appears blue-shifted when they move towards us, and red-shifted when they move away. Credit: AIP/ A. Khalatyan/ J. Fohlmeister

Overall, the work detected 17,181 filaments. Most of the galaxies are within nearly 30 billion billion km from the filament axis, while the cylinder’s radius is twice this size. Despite the impressive result and the numerous filaments observed, it does not mean every single cosmic web has a spin, that is because we don’t have enough galaxies to represent the whole universe. Until we get more data, the study has provided the first actual evidence for such an object and that is already stunning.

share Share

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

If this dwarf planet supported life, it means there were many Earths in our solar system.

Space Solar Panels Could Cut Europe’s Reliance on Land-Based Renewables by 80 Percent

A new study shows space solar panels could slash Europe’s energy costs by 2050.

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

An ‘extremely stripped supernova’ confirms the existence of a key feature of physicists’ models of how stars produce the elements that make up the Universe.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.

Scientists May Have Found a New Mineral on Mars. It Hints The Red Planet Stayed Warm Longer

Scientists trace an enigmatic infrared band to heated, oxygen-altered sulfates.

A Comet That Exploded Over Earth 12,800 Years Ago May Have Triggered Centuries of Bitter Cold

Comet fragments may have sparked Earth’s mysterious 1,400-year cold spell.

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

We could have some good news.

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

Bright, polarized, and unseen in any other light — Punctum challenges astrophysical norms.

Archaeologists Find 2,000-Year-Old Roman ‘Drug Stash’ Hidden Inside a Bone

Archaeologists have finally proven that Romans used black henbane. But how did they use it?