homehome Home chatchat Notifications


Asteroseismology pioneers who peered inside the sun awarded prestigious prize

Thanks to them, we have a better understanding of the internal structure of stars

Mihai Andrei
June 1, 2022 @ 5:38 pm

share Share

Every year since 2005, the Kavli Prize has been awarded to researchers who’ve made outstanding contributions in the fields of astrophysics, nanoscience, and neuroscience. It’s a bit like the Nobel Prize, but instead of focusing on more “classical” fields such as physics or chemistry, the Kavli Prize focuses on these three more novel fields. This year, the prize for astrophysics was awarded to Conny Aerts (Belgium), Jørgen Christensen-Dalsgaard (Denmark), and Roger Ulrich (USA).

The breakthrough work of these researchers laid the foundations of our understanding of the interior of stars and
solar and stellar structure theory and revolutionized our understanding of the interiors of stars.

Different oscillation modes have different sensitivities to the structure of a star. By observing multiple modes, one can therefore partially infer a star’s internal structure. Image via Wiki Commons.

The sound of stars

Did you ever wonder how we know so much about the interior structure of the Earth when the deepest hole we’ve dug is only a few kilometers deep? From a young age, we’re taught that the Earth features a core, a mantle, and a crust, but it’s not like we can actually go and see them directly; instead, researchers use earthquakes to study.

Earthquakes produce seismic waves that propagate through the Earth’s interior. We can detect these waves (which are essentially acoustic or sound waves) with specialized instruments and measure their speed, wavelength, and other parameters. Based on these measurements, scientists can then make deductions about the interior of the planet — the environment in which these stars propagated.

But what about stars? Stars are gaseous spheres and we can’t exactly go and place scientific instruments to monitor them, but we can still observe them at a distance. In the late 1960s, astronomers noted that every few minutes, the surface of the Sun moves up and down by a few kilometers. Initially, astronomers believed this is restricted to the solar atmosphere, but Roger Ulrich wasn’t convinced.

Credits: Kavli Prize.

Ulrich wasn’t satisfied with the information that astronomical observations were providing, so instead, he developed a mathematical model of the sun as a hot ball of gas. It was before the advent of powerful computers, but Ulrich nevertheless managed to show that these oscillations are related to acoustic waves from inside the sun — somewhat similar to the acoustic waves produced by earthquakes.

This laid the mathematical foundation for helioseismology, the study of the structure and dynamics of the Sun through its oscillations.

The waves produced by these oscillations also encode information about different solar regions. A wave’s speed, which depends on the temperature of the Sun, is a key parameter that can be used to infer the density and even the chemical make-up of the Sun.

Ulrich’s work integrated theoretical models and practical observations. In the 1970s and 1980s, Ulrich was a key supporter of the Heliospheric Observatory (SoHO) mission, a mission designed to study the Sun “inside out.”

To the sun and beyond

SoHO Spacecraft. Credit: ESA/NASA/SoHO/LASCO

Another important supporter of SoHO was Jørgen Christensen-Dalsgaard, who figured out that it wasn’t just the sun — other stars were also doing this dance. So in addition to seismology (on Earth), helioseismology (on the Sun), you could also do asteroseismology (on any star). He focused on cooler, lighter stars, either similar to the sun or even smaller (such as dwarfs).

Among many other contributions, Christensen-Dalsgaard played a key role in determining the sun’s helium content and the sound speed profile. He also realized that satellite observers launched with the purpose of discovering planets (for instance, the TESS mission) could also be used for asteroseismology.

Meanwhile, Conny Aerts expanded the scope of asteroseismology to larger and hotter stars. Where Christensen-Dalsgaard focused on stars that were sun-sized or smaller, Aerts was keen on larger objects. She also used data from both helioseismology missions and planet-finding missions.

Aerts pioneered a new rigorous mathematical methodology used to detect and identify stellar oscillations and more recently, has also worked on designing and applying statistical classification methods in a machine-learning context. Armed with these methods, she has made a number of important discoveries regarding stellar evolution. Her Ph.D. students and colleagues are now working to expand these methods even further.

It’s remarkable that we’ve learned so much about the inside of the Earth — but understanding the structure and behavior of the Sun and other stars that lie light years away is a much greater challenge and required a careful integration of both observational data and mathematical models. Conny Aerts, Jørgen Christensen-Dalsgaard, and Roger Ulrich have made valuable contributions to our understanding of stars. In addition to the glory, they will also share a prize of $1 million USD.

share Share

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.