homehome Home chatchat Notifications


Modern people from the Pacific Islands have remnant Neanderthal and Denisovan DNA

The relationship between ancient humans and Neanderthals was proven to be much more intricate than previously believed.

Mihai Andrei
March 21, 2016 @ 8:06 am

share Share

The relationship between ancient humans and Neanderthals was proven to be much more intricate than previously believed. It was first shown that humans interbred with Neanderthals 50,000 years ago, then 100,000 years ago, and now, a new study found that people from a Pacific Island hold substantial amounts of not only Neanderthal, but also Denisovan DNA.

Melanesia is possibly the only place in the world with substantial amounts of Denisovan DNA.

Denisovans are an extinct species of human in the genus Homo. In March 2010, scientists announced the discovery of a finger bone fragment of a juvenile female who lived about 41,000 years ago, found in the remote Denisova Cave in the Altai Mountains in Siberia, a cave which has also been inhabited by Neanderthals and modern humans. DNA studies confirmed this was a new species, related to Neanderthals but ultimately different. However, while Neanderthal DNA is common in most non-African humans, Denisovan DNA is much more elusive. There is a notable exception however: the inhabitants of Melanesia, a subregion of Oceania, have between 4% and 6% Denisovan DNA.

This is curious for two reasons. First of all, it’s an isolated population on relatively inaccessible islands. Second of all, it’s really far from the Altai Mountains in Siberia, where researchers believe Denisovans stem from.

“Denisovans are the only species of archaic humans about whom we know less from fossil evidence and more from where their genes show up in modern humans,” said Joshua Akey of the University of Washington, who co-led the study.

Akey, a University of Washington professor of genome sciences, and Svante Paabo, of the Department of Evolutionary Genetics at the Max-Planck-Institute for Evolutionary Anthropology, oversaw the Melanesian genome project. The project represents a new approach at studying a human species – by studying the effect and occurrence of its genes. According to Vernot:

“Different populations of people have slightly different levels of Neanderthal ancestry, which likely means that humans repeatedly ran into Neanderthals as they spread across Europe.”

Indeed, Denisovans seemed to have quite a broad range of activity, and we can sort of map out this range by seeing where their DNA pops up.

“I think that people (and Neanderthals and Denisovans) liked to wander,” said Benjamin Vernot, a UW postdoctoral student in genomic sciences who led the project. “And yes, studies like this can help us track where they wandered.”

Previously, similar approaches mapped the populations without Neanderthal DNA, helping establish their range – or rather, helping establish the limits of their range.

“We now know that some of those regions are also devoid of Denisovan sequences, ” he said. Vernot referred to those regions as “archaic deserts” that strengthen the argument that something there is uniquely human. The size of those regions might mean that selection against archaic sequences — or other reasons for gene depletion — was strong, maybe stronger than one might expect, Vernot said.

It’s a long and time-consuming approach and it won’t reveal the complete story but ultimately, it will tell us a lot about our own ancient history – as well as that of our evolutionary cousins.

“Some of the sequences modern humans inherited from Neanderthals and Denisovans helped our ancestors survive and reproduce,” Akey said.

Journal Reference:

  1. By Benjamin Vernot, Serena Tucci, Janet Kelso, Joshua G. Schraiber, Aaron B. Wolf, Rachel M. Gittelman, Michael Dannemann, Steffi Grote, Rajiv C. McCoy, Heather Norton, Laura B. Scheinfeldt, David A. Merriwether, George Koki, Jonathan S. Friedlaender, Jon Wakefield, Svante Pääbo, Joshua M. Akey. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals.Science, 2016 DOI: 10.1126/science.aad9416

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.