homehome Home chatchat Notifications


Ant colonies resemble neural networks when making decisions

Both outside information and the colony's own properties matter in this process.

Alexandru Micu
July 21, 2022 @ 6:44 pm

share Share

Groups of individual ants create decision-making networks very similar to those created by neurons in a brain.

Image via Pixabay.

New research from the Rockefeller University suggests that colonies of ants make decisions collectively, with outcomes dependent both on the magnitude of the stressor requiring a decision as well as the size of the ant group. The findings suggest that ants combine sensory information about their environment with parameters of their colony to arrive at a group response.

Most interestingly of all, this process is similar to the way neural networks make decisions.

Working together

“We pioneered an approach to understand the ant colony as a cognitive-like system that perceives inputs and then translates them into behavioral outputs,” says Daniel Kronauer, head of the Laboratory of Social Evolution and Behavior at Rockefeller, and lead author of the paper. “This is one of the first steps toward really understanding how insect societies engage in collective computation.”

The team explains that decision-making is all about handling a series of computations in such a way as to maximize benefits and minimize costs. In sensory response thresholding for example — this is a common type of decision-making for living organisms — an animal has to feel a particular sensory input such as pain past a certain level to embark on a costly behavior, such as running away. If the input isn’t strong enough, the response is not ‘worth it’.

The authors wanted to investigate how this type of information processing occurs on a collective level, and how group dynamics influence which decision is taken and how. For this, they developed a system in which they could introduce highly-controlled temperature changes to an ant colony. The behavioral responses of ants and the colony as a whole was tracked by marking each insect with colored dots and following their movements on video.

As they expected, a colony of 36 workers and 18 larvae readily evacuated their nest when temperatures were increased to 34 degrees Celsius, which is uncomfortably warm for the insects. What was surprising, however, was to see that colony size has an effect on the decision to move, as well: for a colony of over 200 individuals, the temperatures required to make them move were in excess of 36 degrees.

“It seems that the threshold isn’t fixed. Rather, it’s an emergent property that changes depending on the group size,” Kronauer says.

But individual ants are unaware of the total size of the colony, so how does this influence their decision to leave? The authors believe the explanation has to do with the way pheromones, the chemicals ants use to communicate, scale in effect when more ants are present. They propose a mathematical framework that describes this communication and how numbers can influence its effectiveness.

It is also possible that the larger a colony grows, the more difficult it is to move. So higher temperatures — more discomfort — will be needed to convince them that the effort required to relocate is ‘worth it’.

In the future, the duo plans to further refine their theoretical model for the decision-making process in the ant colony by introducing more parameters into the experiment and seeing how the insects respond. For example, they plan to tamper with the pheromone levels in the enclosure, or to create genetically-modified ants whose ability to detect temperatures varies from the norm.

“What we’ve been able to do so far is to perturb the system and measure the output precisely,” Kronauer says. “In the long term, the idea is to reverse engineer the system to deduce its inner workings in more and more detail.”

The paper “The emergence of a collective sensory response threshold in ant colonies” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.