homehome Home chatchat Notifications


How plants decide when to flower and when to grow

Flower life seems simple enough, but there is some important decision-making involved.

Mihai Andrei
September 19, 2019 @ 6:06 pm

share Share

An ancestral plant could help researchers understand when and why plants start to blossom.

Depiction of liverworts from Ernst Hackel‘s Kunstformen der Natur, 1904.

It’s easy to think that flowers have been around forever, but they actually haven’t been around for that long — well, in geological time at least. Flowering plants have emerged some 130 million years ago, during a period called the Cretaceous; for comparison, sharks have been around for more than 3 times that period. However, although flowering plants appeared relatively late (the first land plants emerged more than 700 million years ago), they are the most diverse group of land plants.

The act of flowering (which is essentially producing the plant’s reproductive structure) is quite complicated though. The transition to flowering is one of the biggest changes that a plant makes during its lifecycle. The time needs to be right, the environmental conditions need to be right, and the plant needs to have sufficient resources to trigger the changes. Without the environmental cues that trigger changes in the plant’s hormones, without a cold period to trigger vernalization, plants just don’t flower.

In some cases, plants choose to invest the energy for flowering into growing bigger. It’s kind of like a fallback investment: you don’t get to reproduce, but you get bigger, you’ll presumably have access to more energy and nutrients, and you’ll reproduce more the next time.

But not only flowering plants have to make this decision. In order to assess when this happens, a team of researchers working in Japan studied liverwort, a descendant of the first plants to move out of the ancient oceans and onto land.

Liverwort grows all over the world. It looks a bit like moss and also prefers the shady and cool environments that moss thrives in. Liverwort and moss are part of a group called Bryophyta. They don’t produce flowers and instead reproduce through spores, but fundamentally, the decision they must make is the same — although there are major differences, reproduction is always “expensive” in the plant world.

Healthy female Marchantia polymorpha liverworts develop distinctive umbrella-shaped structures when they are ready to reproduce. Image by Caitlin Devor, University of Tokyo.

The reason why researchers studied liverwort is that it has a relatively simple genome structure, especially compared to the plants most commonly used in this sort of study, like tobacco and Arabidopsis. The entire genome of the liverwort species Marchantia polymorpha was also sequenced in 2017 which further aided this study.

“Liverworts have the maximum power with the least structure,” said Professor Yuichiro Watanabe from the University of Tokyo’s Department of Life Sciences, an expert in plant molecular biology.

The team looked at microRNA — small molecules which regulate the activity of other genes. They found over 100 types of this molecule, and 8 of them were almost identical to microRNA found in Arabidopsis (which is a flowering plant).

This is particularly interesting. Why would the same gene-regulating mechanisms be found in an ancestral plant like liverwort and also in a modern plant which evolved hundreds of millions of years later?

“So, why keep them? We want to know what those shared microRNAs are doing, and liverworts are now a convenient model for us to investigate,” said Watanabe.

They found that one of the common microRNAs was helping plants control the shift to the reproductive stage. To test that it was indeed responsible for this change, they engineered a modified version of this microRNA. This confirmed their theory, and what happened was pretty weird: these modified liverworts produced reproductive cells on their vegetative tissues, rather than exhibiting normal growth.

“This was amazing to us. Those liverworts skipped some part of the reproductive process and the body itself becomes the reproductive organ,” said Watanabe.

Liverworts normally sprout distinctive male (top row, left) and female (bottom row, left) structures when they reproduce. When researchers genetically modify the plants to lack microRNA156/529, the plants develop reproductive organs on their vegetative structures, which are called thalli. Normal thalli (center) are solid green with smooth edges. MicroRNA156/529 knockout male thalli (top right) are transparent at the edges and microRNA156/529 knockout female thalli (bottom right) develop irregular edges. Image credit: Tsuzuki et al., 2019.

Watanabe imagines that in the future, farmers could measure the amount of microRNA in crops to predict harvest times.

“We hope our results inspire others to develop new applications for plant reproduction,” said Watanabe.

Journal Reference: Tsuzuki et al., 2019, DOI: 10.1016/j.cub.2019.07.084.

share Share

Climate Change May Have Killed More Than 16,000 People in Europe This Summer

Researchers warn that preventable heat-related deaths will continue to rise with continued fossil fuel emissions.

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.