homehome Home chatchat Notifications


A doctor's best friend: Micro-Diamonds could be the future of medical imaging

Diamonds could allow doctors to make use of the best versions of two imaging techniques -- simultaneously.

Mihai Andrei
June 8, 2021 @ 8:30 am

share Share

When it comes to medical imaging, it’s often a trade-off between how deep you can probe and what resolution you have. With light microscopes, you get excellent resolution, down to submicron structures inside cells or tissue — but the vision only penetrates to a about 1 millimeter or so, which renders it unusable in many situations (beyond this depth, light starts scattering).

Magnetic resonance imaging (MRI), meanwhile, uses radio frequencies that can reach deep enough to go through the entire body — but the resolution is much worse (a resolution of about one millimeter, 1,000 times worse). Now, researchers have found a way to make the best of both worlds.

The microdiamonds used as biological tracers are about 200 microns across, less than one-hundredth of an inch. They fluoresce red but can also be hyperpolarized, allowing them to be detected both optically—by fluorescence microscopy—and by radio-frequency NMR imaging, boosting the power of both techniques. Credit: Ashok Ajoy, UC Berkeley.

Now, a new study from a University of California-Berkeley researcher reports a new technique that brings new light into the world of medical imaging. With the aid of microscopic diamond tracers, doctors may soon obtain information via MRI and optical fluorescence simultaneously, obtaining high-resolution images from up to one centimeter below the surface of the tissue — 10 times deeper than with light alone.

This is perhaps the first demonstration that the same object can be imaged in optics and hyperpolarized MRI simultaneously,” said Ashok Ajoy, UC Berkeley assistant professor of chemistry. “There is a lot of information you can get in combination because the two modes are better than the sum of their parts. This opens up many possibilities, where you can accelerate the imaging of these diamond tracers in a medium by several orders of magnitude.”

The technique, which would be useful for studying cells and tissues outside the body when looking for markers of disease, utilizes diamonds as a type of biological tracer. This relatively new approach relies on the fact that microdiamonds can have some of their carbon atoms kicked out and replaced by nitrogen. This process leaves empty spots in the crystal lattice that become fluorescent when hit by a laser.

“It turns out that if you shine light on these particles, you can align their spins to a very, very high degree—about three to four orders of magnitude higher than the alignment of spins in an MRI machine,” Ajoy said.

A somewhat similar approach can also work with magnetic imaging, Ajoy realized. Some atoms in the microdiamonds can be polarized as they become fluorescent. In other words, the diamonds can be simultaneously used to image tissue with optical microscopes and magnetic methods like MRI.

“Optical imaging suffers greatly when you go in deep tissue. Even beyond 1 millimeter, you get a lot of optical scattering. This is a major problem,” Ajoy said. “The advantage here is that the imaging can be done in radio frequencies and optical light using the same diamond tracer. The same version of MRI that you use for imaging inside people can be used for imaging these diamond particles, even when the optical fluorescence signature is completely scattered out.”

Of course, there’s still a long way to go before the approach can actually be used practically. This is, for now, just a proof of concept — getting it to work on medical equipment (let alone equipment that is not very costly) is a whole different ball game.

The good news is that these diamond tracers are inexpensive and easy to design, Ajoy says. This could allow for inexpensive and performant imaging machines. Meanwhile, MRIs go for millions of dollars, which often means that only large, rich hospitals can afford them.

Journal Reference: Xudong Lv el al., “Background-free dual-mode optical and 13C magnetic resonance imaging in diamond particles,” PNAS (2021). www.pnas.org/cgi/doi/10.1073/pnas.2023579118

share Share

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

AI has a hidden water cost − here’s how to calculate yours

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message. That figure includes the water used to […]

Smart Locks Have Become the Modern Frontier of Home Security

What happens when humanity’s oldest symbol of security—the lock—meets the Internet of Things?

A Global Study Shows Women Are Just as Aggressive as Men with Siblings

Girls are just as aggressive as boys — when it comes to their brothers and sisters.

Birds Are Singing Nearly An Hour Longer Every Day Because Of City Lights

Light pollution is making birds sing nearly an hour longer each day

U.S. Mine Waste Contains Enough Critical Minerals and Rare Earths to Easily End Imports. But Tapping into These Resources Is Anything but Easy

The rocks we discard hold the clean energy minerals we need most.

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

Researchers finally control the fermentation process that can make or break chocolate.

Most Countries in the World Were Ready for a Historic Plastic Agreement. Oil Giants Killed It

Diplomats from 184 nations packed their bags with no deal and no clear path forward.