homehome Home chatchat Notifications


Physics sheds light on the 20-second handwashing rule. Here's why it's so effective

A fluid dynamics model explains what happens to potentially harmful particles during handwashing.

Jordan Strickler
August 18, 2021 @ 1:30 pm

share Share

Physics plays a big role into clean hands. (Image: Pixabay)

In the past several months, the CDC has touted 20 seconds as the standard for all hand-washing activities, bringing a number of rarely sung happy birthdays, fight songs, and other multiple-second ditties out of the closet as a counter for the time period.

However, studies were short on why exactly 20 is the magic number. Well, now there is one.

Harder, better, faster, washer

In a new report out of the American Institute of Physics published in Physics of Fluids, researchers have created a model which captures the key mechanics of hand-washing. Turns out faster hand movement is better.

By simulating the motion you make when cleaning your hands, researchers estimated the time scales on which particles like viruses and bacteria were removed from your hands. Their model acted in two dimensions, with a wavy surface moving past another with a thin film of liquid separating the two — it’s imperfect but still good enough to get an idea. These wavy surfaces represented hands in their model due to the surface harshness on small spatial scales.

Particles would be trapped on the rough surfaces in wells of the hands, like the bottom of a valley. Vigorous movement and high water pressure would bring the particles to the surface and out of their little valley homes and out of your skin. According to Paul Hammond, author of the report, it turns out that 20 seconds is what he came up with in his model as the time to dislodge these particles from your hands.

“Basically, the flow tells you about the forces on the particles. Then you can work out how the particles move and figure out if they get removed,” said Hammond, who likened the process to scrubbing a stain on a shirt where the faster the motion the more likely it is to remove it. “If you move your hands too gently, too slowly, relative to one another, the forces created by the flowing fluid are not big enough to overcome the force holding the particle down.”

Hammond states that the model does not take into account chemical or biological processes that occur when using soap, but it’s pretty well known across the board that soap only improves the probability that your hands will, in fact, become cleaner.

“These viruses have membranes that surround the genetic particles that are called lipid membranes because they have an oily, greasy structure,” Thomas Gilbert, an associate professor of chemistry and chemical biology at Northeastern University, told the BBC. “It’s this kind of structure than be neutralized by soap and water.”

He explained that the dissolving of the outer “envelope” breaks up virus cells, and the genetic material, which is the RNA that takes over human cells in order to make copies of the virus, is swept away and destroyed because of the chemical or biological agents.

Just knowing how the physics of handwashing works can give us some clues as to how we can create more effective and environmentally friendly soaps, the researcher concludes.

“Nowadays, we need to be a bit more thoughtful about what happens to the wash chemicals when they go down the plughole and enter the environment.”

In the end, there is much more that goes into the story of handwashing, but this study does explain some puzzles and lay the foundation for future research. Truth be told, we’ve learned in the pandemic that we could all use a bit of work on our handwashing.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.