homehome Home chatchat Notifications


Viruses assemble key components for the lithium-air batteries of the future

In a synergy between biology and electrochemistry, researchers at MIT cleverly exploited genetically modified viruses to assemble metal molecules into extremely thin nanowires that can be used as cathodes in a lithium-air battery. This type of battery has been thoroughly researched in the past few years and has sparked the interest of scientists because of […]

Tibi Puiu
November 14, 2013 @ 1:54 pm

share Share

In a synergy between biology and electrochemistry, researchers at MIT cleverly exploited genetically modified viruses to assemble metal molecules into extremely thin nanowires that can be used as cathodes in a lithium-air battery. This type of battery has been thoroughly researched in the past few years and has sparked the interest of scientists because of its tremendous potential to store high amounts of energy per unit size. For instance, such batteries can carry as much as three times the amount of energy per area than a lithium-ion battery, currently the de facto mobile energy storage medium used for everything from mobile phones to notebooks to electric cars.

mit_biological_nanowires

(C) Courtesy of MIT

The MIT researchers specifically genetically designed a virus called M13 which has an inherent affinity for capturing metal molecules from water and binding them together to form structures – he’s quite the nifty builder, too. The team demonstrated that the virus could assemble manganese oxide molecules (a favored material for lithium-air battery cathode) into nanowires as thin as 80 nanometers or about the width of a blood cell.

Biologically driven nanowires

The process doesn’t construct perfectly smooth wires, which in our case is a good thing. The rougher the surface, the better, since you want as many lithium molecules to come into contact with the cathode material as possible – this way you don’t just have an almost 2D surface for molecules to cling on, but a 3-D one. Also, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode. Another positive point going to the virus generation method is that unlike conventional chemical manganese oxide assembly methods, which are extremely energy intensive requiring a high temperature environment, the present process can be run at room temperature.

[RELATED] World’s smallest battery created with a nanowire

To make the nanowires more electrically conductive and of course provide the cathode with catalysis capabilities, the wires are doped with palladium nanoparticles. Other methods involve making cathode nanowires in bulk materials which translates in a lot of palladium being used, and as you may know it’s a very expensive material.

One of the lead authors of the paper, MIT Professor Angela Belcher, envisions the whole process akin to how an abalone grows its shell —  by collecting calcium from seawater and depositing it into a solid, linked structure.

Belcher stresses, however, that their work only details how a cathode could be made for a lithium-air battery. It still remains to be seen how the anode or the electrolyte (the material or solution that allows lithium ions to pass to the anode and complete the electrochemical reaction) will be assembled. A big questions arises, as well. Can this method be scaled? Well, it might be difficult to grow millions of cathode nanowires using viruses alone, but it’s possible that actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

The work was detailed in a paper published in the journal Nature Communications. 

 

 

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.