homehome Home chatchat Notifications


Researchers describe improved technique to extract water from brine

It's cheaper and more efficient.

Mihai Andrei
May 30, 2017 @ 9:42 pm

share Share

Engineers working in the US have found a way to extract almost 100% of the water from brine, up from 6%. This innovation can alleviate water shortages in parts of the world where water is scarce, but it can also reduce the high salinity of disposable waste (ie in hydraulic fracking).

Hot brines used in traditional membrane distillation systems are highly corrosive, making the heat exchangers and other system elements expensive, and limiting water recovery. Now, researchers have developed a new mechanism which is not only cheaper but also more efficient than previously existing options. Image credits: UC Riverside.

Water shortage is no joke. As the world population continues to grow, more and more areas use water unsustainably and are almost certainly set for a future water crisis. In these conditions, desalination becomes more and more a tempting option, as Israel has been demonstrating for a few years already. Still, the process can be significantly improved, as a team from University of California, Riverside, has proven.

The team has developed a carbon nanotube heating element, vastly improving the recovery of fresh water during membrane distillation processes. Describing the new approach in the journal Nature Nanotechnology. David Jassby, an assistant professor of chemical and environmental engineering in UCR’s Bourns College of Engineering explains that previously, the recovery rate was capped at a much lower figure.

“In an ideal scenario, thermal desalination would allow the recovery of all the water from brine, leaving behind a tiny amount of a solid, crystalline salt that could be used or disposed of,” Jassby said. “Unfortunately, current membrane distillation processes rely on a constant feed of hot brine over the membrane, which limits water recovery across the membrane to about 6 percent.”

Most desalinization facilities use reverse osmosis, but the more salt you have in the water, the less efficient this process becomes. When dealing with brines, reverse osmosis becomes highly inefficient.

While such brines are rarely prevalent naturally, they are often produced as waste and must be disposed of to prevent environmental damage. What Jassby and his collaborators did not only ensure that all the water is desalinized, but it also reduces the necessary heat for the process, and thus saves a lot of energy.

The study has another interesting outcome — hot, briny water is a highly corrosive environment, and in order to develop this device, they also had to make sure that the parts can survive and operate properly for a longer period of time. Specifically, a threshold frequency was identified where electrochemical oxidation of the nanotubes was prevented.

Journal Reference: Alexander V. Dudchenko, Chuxiao Chen, Alexis Cardenas, Julianne Rolf & David Jassby — Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes.  doi:10.1038/nnano.2017.102

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths