homehome Home chatchat Notifications


Underwater glue inspired by shellfish might help repair ships

Taking inspiration from nature, scientists at MIT have engineered a new sort of glue that acts like a powerful adhesive even in underwater conditions and can cling on to virtually any surface, be it metal or organic. The glue might prove to be useful to repair ships or seal wounds and surgical incisions. The strongest […]

Tibi Puiu
September 22, 2014 @ 2:40 pm

share Share

strongest underwater glue

Shown here is the adhesion between the silica tip of an atomic force microscope and adhesive fibers made by fusing mussel foot proteins and curli amyloid fibers.(Photo : Pixabay)

Taking inspiration from nature, scientists at MIT have engineered a new sort of glue that acts like a powerful adhesive even in underwater conditions and can cling on to virtually any surface, be it metal or organic. The glue might prove to be useful to repair ships or seal wounds and surgical incisions.

The strongest underwater glue to date

Shellfish like mussels and barnacles are a familiar sight to seamen since they’re often found by the thousands clinging to rocks or ship hulls. They hold on tightly even through the worse of storms and can be very difficult to detach, much to the exasperation of the maintenance crew. This uncanny ability is made possible by very sticky proteins secreted by such animals, called mussle foot protein

[ALSO READ] Making a novel glue out of gold

Previously, scientists engineered E. coli bacteria to produce the same proteins, however the resulting matter wasn’t nearly as adhesive. This time, the MIT engineers took an alternate route; while they engineered the same E. coli bacteria to secret these proteins, they were also careful to add and activate genes that produce curli fibers. Curl fibers are fibrous proteins that can naturally join together and self-assemble into much larger, more complicated compounds. More familiarly, the fibers join to form a biofilm – slimy layers formed by bacteria growing on a surface.

Two experiments were made where curli fibers bonded to either mussel foot protein 3 or mussel foot protein 5.After purifying these proteins from the bacteria, the researchers let them incubate and form dense, fibrous meshes. The resulting material has a regular yet flexible structure that binds strongly to both dry and wet surfaces.

“The result is a powerful wet adhesive with independently functioning adsorptive and cohesive moieties,” says Herbert Waite, a professor of chemistry and biochemistry at the University of California at Santa Barbara who was not part of the research team. “The work is very creative, rigorous, and thorough.”

The team tested the resulting matter with atomic force microscopes – a technique for analyzing the surface of a rigid material all the way down to the level of the atom. AFM uses a mechanical probe – the tip – to magnify surface features up to 100,000,000 times, and it produces 3-D images of the surface.The researchers found that the adhesive bonded strongly to different types of materials, using three tips for the microscope: silica, gold, and polystyrene. Adhesives assembled from equal amounts of mussel foot protein 3 and mussel foot protein 5 formed stronger adhesives than those with a different ratio, or only one of the two proteins on their own.

The researchers report the resulting adhesive is actually stronger than naturally occurring mussel adhesives and that it’s the strongest protein-based glue designed to work underwater, reported to date. Findings appeared in the journal Nature Nanotechnology.

share Share

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.

Conservative people in the US distrust science way more broadly than previously thought

Even chemistry gets side-eye now. Trust in science is crumbling across America's ideology.

We Could One Day Power a Galactic Civilization with Spinning Black Holes

Could future civilizations plug into the spin of space-time itself?

Scientists filmed wild chimpanzees sharing alcohol-laced fermented fruit for the first time and it looks eerily familiar

New footage suggests our primate cousins may have their own version of happy hour.

China’s Humanoid Robots Stumble, Break Down, and Finish the World’s First Robot Half Marathon

Bipedal bots compete with humans in first half-marathon race — with a bit of help from duct tape.

Here's why you should stop working out before bedtime

Even hours before bedtime, workouts can be a problem.

China Just Powered Up the World’s First Thorium Reactor — and Reloaded It Mid-Run

They used declassified US documents to develop the technology.

Packed Festival Crowds Actually Form Living Vortices -- And You Can Predict Them with Physics

The physics of crows explains why they sometimes move like waves.

What Happens When Russian and Ukrainian Soldiers Come Home?

Russian and Ukrainian soldiers will eventually largely lay down their arms, but as the Soviet Afghanistan War shows, returning from the frontlines causes its own issues.

Some people are just wired to like music more, study shows

Most people enjoy music to some extent. But while some get goosebumps from their favorite song, others don’t really feel that much. A part of that is based on our culture. But according to one study, about half of it is written in our genes. In one of the largest twin studies on musical pleasure […]