homehome Home chatchat Notifications


Autonomous underwater gliders plan missions and coordinate by themselves

Climate models and environmental monitoring missions are ever more reliant on autonomous underwater vehicles (AUVs) to scour the ocean depths and bring back valuable data like temperature, salinity, carbon levels and so on. Researchers at MIT have now upgraded the way AUVs perform their missions by adding an extra dimension to their autonomy. They demonstrate how a pack of AUVs, directed by a "captain" drone, is able to navigate obstacles and retrieve data with minimal intervention. This dramatically enhances performance and might revolutionize the way scientists study the oceans.

Tibi Puiu
May 12, 2015 @ 9:44 am

share Share

Researchers watch underwater footage taken by various AUVs exploring Australia's Scott Reef. Image: MIT

Researchers watch underwater footage taken by various AUVs exploring Australia’s Scott Reef. Image: MIT

Climate models and environmental monitoring missions are ever more reliant on autonomous underwater vehicles (AUVs) to scour the ocean depths and bring back valuable data like temperature, salinity, carbon levels and so on. Researchers at MIT have now upgraded the way AUVs perform their missions by adding an extra dimension to their autonomy. They demonstrate how a pack of AUVs, directed by a “captain” drone, is able to navigate obstacles and retrieve data with minimal intervention. This dramatically enhances performance and might revolutionize the way scientists study the oceans.

Typically, these sort of robots require predetermined instructions very precisely laid out by a programmer. The alternative is for a person to remotely control the underwater vehicle, but it wouldn’t be autonomous anymore, defeating the purpose. The team at MIT had a different plan, by infusing the bots with almost cognitive-like behavior. Aptly named “Enterprise”, the program uses a hierarchical decision making system in which one AUV is tasked as the “captain” and the other follow its lead. The captain run his decision based on data delivered by the “navigator”, another AUV which watches for obstacles and plans the route, as well as the “engineer”, an AUV which handles any real time situations where there might be a malfunction or engineering problem. Together, the AUVs performed nicely in the waters off the  western coast of Australia back in March.

“We wanted to show that these vehicles could plan their own missions, and execute, adapt, and re-plan them alone, without human support,” says Brian Williams, a professor of aeronautics and astronautics at MIT, and principal developer of the mission-planning system. “With this system, we were showing we could safely zigzag all the way around the reef, like an obstacle course.”

“We can give the system choices, like, ‘Go to either this or that science location and map it out,’ or ‘Communicate via an acoustic modem, or a satellite link,'” Williams says. “What the system does is, it makes those choices, but makes sure it satisfies all the timing constraints and doesn’t collide with anything along the way. So it has the ability to adapt to its environment.”

A Slocum glider, used by the MIT team, navigates underwater. Credit: MIT

A Slocum glider, used by the MIT team, navigates underwater. Credit: MIT

A while ago, researchers deployed robot gliders equipped with sensors that track temperature, salinity and oxygen levels in the waters around the Antarctic. These showed that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting warm waters to the Antarctic coast. Using smarter, more agile gliders scientists can now probe the oceans in places that were previously physically inaccessible. Who knows what they’ll find then. By giving robots control of higher-level decision-making, Williams says such a system would also free engineers to think about overall strategy, while AUVs determine for themselves a specific mission plan. Such a system could also reduce the size of the operational team needed on research cruises.

“If you look at the ocean right now, we can use Earth-orbiting satellites, but they don’t penetrate much below the surface,” Williams said. “You could send sea vessels which send one autonomous vehicle, but that doesn’t show you a lot. This technology can offer a whole new way to observe the ocean, which is exciting.”

Williams and colleagues will present their Enterprise findings at the International Conference on Automated Planning and Scheduling in Israel in June.

share Share

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.