homehome Home chatchat Notifications


Robo-roach and robo-bird team up to conduct recon mission

It’s almost like a Disney movie: a roach helps a bird take off from its back in order to save their friends – except both the roach and the bird are robotic, and the recon mission was just a test conducted in a lab from the University of California, Berkeley. But this technology could save lives […]

Mihai Andrei
May 27, 2015 @ 9:54 am

share Share

It’s almost like a Disney movie: a roach helps a bird take off from its back in order to save their friends – except both the roach and the bird are robotic, and the recon mission was just a test conducted in a lab from the University of California, Berkeley. But this technology could save lives for real, researchers explain.

“While legged robots are great for uneven terrain, they have difficulty traversing tall obstacles,” the team writes in a paper describing their invention. “A flying millirobot has the ability to overcome tall obstacles and flapping-winged robots can have energy advantages over rotary and fixed wing fliers when it comes to mixedmodal flight (gliding, forward flight).”

The two robots are actually called VelociRoACH and H2Bird, and together, they can accomplish what singular robots couldn’t. Basically, the roach acts as an aircraft carrier for the bird, which then takes off and performs the recon mission. The launch is needed because the H2Bird weighs about 13 grams, but doesn’t have what it takes to get off the ground at the right speed and angle – so its roach friend gives it a small boost. H2Bird can also start flapping its wings while atop VelociRoACH. Designing a single robot that does all this would be much more difficult than designing two robots that can team up.

“[B]y combining two different forms of locomotion in one platform, you can take advantage of (say) the efficiency and endurance of a ground robot with the range and versatility of a flying robot. However, designing one robot that can walk and fly tends to be both complicated and inefficient, which is why heterogeneous robot teams are often more appealing,” researchers stated in a press release announcing the development.

Image via IEEE.

In other words, there is no ‘I’ in ‘Robot Team’ – if everyone works together, they can accomplish much more than they could on their own. This doesn’t make it only more efficient, but it also makes it cheaper.

“Placing the H2Bird on top of the VelociRoACH decreases the cost of transport of the VelociRoACH by approximately 16 percent. This decrease in the cost of transport would be useful in a situation where the VelociRoACH and the H2Bird had to both reach a point 80 meters away and the H2Bird had to fly 20 meters in the air, where the VelociRoACH cannot reach. In one case, both robots travel the 80 meters separately, and then the H2Bird continues the last 20 meters. In a second case, the VelociRoACH carries the H2Bird for the first 80 meters, then the H2Bird is launched and flies 20 meters. The second case consumes 25 percent less energy than the first. In situations such as these, cooperative locomotion would be more efficient than independent locomotion,” the press release continues.

Many engineers believe that this is the right approach, as opposed to focusing on Swiss-knife type of robots. Instead of cramming every wanted functionality onto a single system, you make separate systems and optimize them so that they can collaborate.

This type of system could be used to recon previously unavailable areas, and with further developments, has the true potential of saving lives.

“Coordinated Launching of an Ornithopter With a Hexapedal Robot,” by Cameron J. Rose, Parsa Mahmoudieh, and Ronald S. Fearing from UC Berkeley, will be presented this week at ICRA 2015 in Seattle.

share Share

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.

Your gold could come from some of the most violent stars in the universe

That gold in your phone could have originated from a magnetar.

Ronan the Sea Lion Can Keep a Beat Better Than You Can — and She Might Just Change What We Know About Music and the Brain

A rescued sea lion is shaking up what scientists thought they knew about rhythm and the brain

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

Tomb art suggests the sky goddess Nut from ancient Egypt might reveal the oldest depiction of our galaxy.

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

New research overturns the idea that dinosaurs were already dying out before the asteroid hit.

Denmark could become the first country to ban deepfakes

Denmark hopes to pass a law prohibiting publishing deepfakes without the subject's consent.

Archaeologists find 2,000-year-old Roman military sandals in Germany with nails for traction

To march legionaries across the vast Roman Empire, solid footwear was required.

Mexico Will Give U.S. More Water to Avert More Tariffs

Droughts due to climate change are making Mexico increasingly water indebted to the USA.

Chinese Student Got Rescued from Mount Fuji—Then Went Back for His Phone and Needed Saving Again

A student was saved two times in four days after ignoring warnings to stay off Mount Fuji.

The perfect pub crawl: mathematicians solve most efficient way to visit all 81,998 bars in South Korea

This is the longest pub crawl ever solved by scientists.