homehome Home chatchat Notifications


New Robotic Prosthetic Hand Replicates the Real Deal

Most modern prosthetics try to look like the real deal, while still featuring underlying robotics. Two researchers at the University of Washington’s Department of Computer Science & Engineering wanted to try another approach – to create a hand that acts like its biological equivalent, even though it may not look like one. In order to do […]

Mihai Andrei
February 24, 2016 @ 3:01 am

share Share

Most modern prosthetics try to look like the real deal, while still featuring underlying robotics. Two researchers at the University of Washington’s Department of Computer Science & Engineering wanted to try another approach – to create a hand that acts like its biological equivalent, even though it may not look like one.

In order to do this, they looked at the human hand as if it were just a mechanical device. They took scans of the bones and muscles and then 3D printed copies to make it as realistic as possible. The idea was to make the structure of the prosthetic based on the structure of the human bones. They also implemented pulley mechanisms, artificial joint capsules, crocheted ligaments and tendons, and other devices for this task. According to IEEE, joint ligaments (which stabilize joints and control their range of motion) are made of high strength Spectra strings, with laser-cut rubber sheets replacing the soft tissues that add joint compliance. Extensor and flexor tendons (for straightening and bending fingers) are also made of Spectra, with more laser-cut rubber sheets for the tendon sheathing and extensor hood, which is a complex webbed multi-layered structure that wraps around the fingers to help manage flexibility and torque.

There’s not detail available about this at the moment, because a paper hasn’t been presented yet.The paper that will be presented at the ICRA in Stockholm, Sweden this coming May: Design of a Highly Biomimetic Anthropomorphic Robotic Hand towards Artificial Limb Regeneration.

Image: Movement Control Laboratory/University of Washington

Image: Movement Control Laboratory/University of Washington

According to Zhe Xu, one of the two researchers working on this project, believes that developing true antropomorphic prosthetics is key to developing proper dexterity:

“The conventional approach to designing anthropomorphic robotic hands often involves mechanizing biological parts with hinges, linkages, and gimbals in order to simplify the seemingly complicated human counterparts. This approach is helpful for understanding and approximating the kinematics of the human hand in general, but inevitably introduces undesirable discrepancies between the human and robotic hands since most of those salient biomechanical features of the human hand are discarded in the mechanizing process. The inherent mismatch between mechanisms of these robotic hands and biomechanics of human hands essentially prevents us from using natural hand motion to directly control them. Thus none of the existing anthropomorphic robotic hands can achieve the human-level dexterity yet.”

He also says that this type of technology could be used as a “scaffolding” to help with limb regeneration research.

“The control of prosthetic hands essentially relies on human brain. Therefore the same neuroprosthetic technologies could be more effective if the design of the prosthesis could be more similar to its biological counterpart. Biocompatible materials can now be printed to form bone structures, biodegradable artificial ligaments have been used to replace the torn anterior cruciate ligaments, human muscles have been successfully cultivated inside petri dish, and peripheral nerves can also be regenerated given the right conditions. All of the these promising technologies require suitable scaffolds for the growth of grafted cells. We are going to collaborate with researchers from biology and tissue engineering to further explore its potential to serve as a bio-fabricated device/scaffold in the emerging fields of neuroprosthetics and limb regeneration.”

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.