homehome Home chatchat Notifications


New WiFi chip uses 100 times less power with minimal loss of quality

Nearly all communication devices today, whether we're speaking of smartphones, tablets or notebooks, rely on WiFi signal to connect to the internet and transmit data. With the rise of the Internet of Things, WiFi will become even more ubiquitous. However, enabling an active WiFi connection also eats up a lot of power. When I have WiFi on, my smartphone goes dead in under 24 hours, compared to 48 or more otherwise. In fact, according to a report, the routers that keep us constantly connected to the Internet – now in nearly 90 million American homes – uses about $1 billion worth of electricity annually. But in a bid to cut WiFi power waste in space, NASA might inadvertently change this situation forever.

Tibi Puiu
July 23, 2015 @ 9:34 am

share Share

Nearly all communication devices today, whether we’re speaking of smartphones, tablets or notebooks, rely on WiFi signal to connect to the internet and transmit data. With the rise of the Internet of Things, WiFi will become even more ubiquitous. However, enabling an active WiFi connection also eats up a lot of power. When I have WiFi on, my smartphone goes dead in under 24 hours, compared to 48 or more otherwise. In fact, according to a report, the routers that keep us constantly connected to the Internet – now in nearly 90 million American homes – uses about $1 billion worth of electricity annually. But in a bid to cut WiFi power waste in space, NASA might inadvertently change this situation forever.

The microchip for wearable devices developed by researchers at JPL and UCLA reflects wireless signals instead of using regular transmitters and receivers. Credit: JPL-Caltech/UCLA

The microchip for wearable devices developed by researchers at JPL and UCLA reflects wireless signals instead of using regular transmitters and receivers. Credit: JPL-Caltech/UCLA

A NASA engineer,  Adrian Tang, closely working with UCLA professor M.C. Frank Chang, developed a new WiFi chip that allegedly uses 100 times less energy. The point was to develop a new technology that might save energy on the International Space Station, but in doing so the chip could also save power in mobile devices across the world.

To communicate over WiFi, your mobile device sends a signal to the router, which the router decodes and sends a new signal back to be read by the smartphone. This back and forth dance costs a lot of power. The chip developed by Tang reflects a constant signal sent by a specialized router, instead of generating a new signal. All the data is embedded in the reflected signal, so essentially all the heavy lifting is done by the router – not the receiving device.

Despite saving a lot of power, the data transmission isn’t that much affected. In test runs, the researchers managed to transfer data at speeds of 330 megabits per second which is actually a lot more than most consumer routers. My own home router only works at 100 Mbs/second, for instance.

“You can send a video in a couple of seconds, but you don’t consume the energy of the wearable device. The transmitter externally is expending energy – not the watch or other wearable,” Chang said.

The biggest challenge was to isolate the reflected signal, given WiFi bounces off all the surfaces in a room.

“When you send a signal to the room, the whole room reflects back to you,” Tang said. “So you need to figure out what’s coming from the wearable and what’s coming from the background and get rid of the background.”

The challenge was handled by the specialized router that is able to discern what new data is being sent via the reflected signals. Both NASA and UCLA are now closely working together to find a partner that could turn the new technology into a commercial system.

story via JPL

share Share

AI 'Reanimated' a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

AI avatars of dead people are teaching courses and testifying in court. Even with the best of intentions, the emerging practice of AI ‘reanimations’ is an ethical quagmire.

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics