homehome Home chatchat Notifications


Blasting ink drops with lasers may lead to better computers

Have you ever wondered how an ink drop blasted by a laser looks like? Physicist Hanneke Gelderblom of the University of Twente in Enschede, Netherlands did! She and her team have won the American Physical Society’s 2014 Gallery of Fluid Motion competition for this technique which is not only super cool, but may one day lead to better […]

Mihai Andrei
December 15, 2014 @ 3:10 pm

share Share

Have you ever wondered how an ink drop blasted by a laser looks like? Physicist Hanneke Gelderblom of the University of Twente in Enschede, Netherlands did! She and her team have won the American Physical Society’s 2014 Gallery of Fluid Motion competition for this technique which is not only super cool, but may one day lead to better computers.

POW A pulse of laser light obliterates a free-falling ink drop in an image from an award-winning video in the American Physical Society’s 2014 Gallery of Fluid Motion competition.

This is what it looks like when a pulse of light obliterates a droplet of ink – the laser delivers so much energy to the droplet that the liquid actually turns to plasma. These nanosecond-long photons and the way they transform liquid to plasma is very interesting for Gelderblom and ASML, the Dutch company that supports her research.

ASML builds what are called litography machines. Litography can mean many things; the main meaning is a method of printing originally based on the immiscibility of oil and water. Today, most types of high-volume books and magazines, especially when illustrated in colour, are printed with offset lithography, which has become the most common form of printing technology since the 1960s. However, in this case, litography means something else – ASML are making litography machines which in turn make computer chips.

The device shoots a laser at drops of molten tin to produce plasma. The plasma then emits extreme ultraviolet light, which can imprint features less than 13.5 nanometers across onto chips. A smaller feature size would enable engineers to pack more transistors onto a single chip. However, as strange as it sounds, even though we’ve been using this technique for quite a while now, there are still many things we don’t understand about it. Gelderblom’s reseach provides insight into how the whole thing actually works.

Her team studies the shape and fragmentation of the disturbed drops and then analyzes how different results can be obtained using different orientations and energies. By understanding and finessing this procedure, she is not only generating super cool images – she is helping develop better and finer computers.

 

share Share

This Rat Found 109 Landmines and Just Broke a World Record

Ronin and other HeroRats have been training to smell landmines since they were six weeks old.

Astronomers Just Found a Faint Speck That Might Be the Missing Ninth Planet

A new discovery could reshape the Solar System's edge.

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

A viral image sparks debate—and ridicule—in Washington's push for UFO transparency.

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

An experimental drone with an unexpected design uses silicone wings and AI to master midair maneuvers.

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

In Arizona’s desert, a 500-year-old cannon sheds light on conquest, resistance, and survival.

No, RFK Jr, the MMR vaccine doesn’t contain ‘aborted fetus debris’

Jesus Christ.

“How Fat Is Kim Jong Un?” Is Now a Cybersecurity Test

North Korean IT operatives are gaming the global job market. This simple question has them beat.

This New Atomic Clock Is So Precise It Won’t Lose a Second for 140 Million Years

The new clock doesn't just keep time — it defines it.

A Soviet shuttle from the Space Race is about to fall uncontrollably from the sky

A ghost from time past is about to return to Earth. But it won't be smooth.

The world’s largest wildlife crossing is under construction in LA, and it’s no less than a miracle

But we need more of these massive wildlife crossings.