homehome Home chatchat Notifications


Zebrafish regenerates brain after injury - what can we learn from it?

Any mammal, including humans, suffering from an injury to the central nervous system will lead to a life-long loss of the particular affected brain function. Some invertebrates, like the zebrafish, in contrast can regenerate parts of their organs, even the central nervous system. The zebrafish’s remarkable ability to regrew parts of its damaged brain has […]

Tibi Puiu
November 12, 2012 @ 12:00 pm

share Share

Any mammal, including humans, suffering from an injury to the central nervous system will lead to a life-long loss of the particular affected brain function. Some invertebrates, like the zebrafish, in contrast can regenerate parts of their organs, even the central nervous system. The zebrafish’s remarkable ability to regrew parts of its damaged brain has fascinated neuroscientists for decades, but until now the mechanisms that signal this formidable regeneration have been unknown.

In the injured hemisphere of the zebrafish brain (left) you can recognize the inflammation: the leukocytes (white blood cell, green) enter the damaged area in order to prevent inflammation. In addition, you can see the active radial glia cells (red). (c) CRTD

In the injured hemisphere of the zebrafish brain (left) you can recognize the inflammation: the leukocytes (white blood cell, green) enter the damaged area in order to prevent inflammation. In addition, you can see the active radial glia cells (red). (c) CRTD

A group of scientists at the Center for Regenerative Therapies Dresden (CRTD), Germany decided to investigate and found that in zebrafish — in contrast to mammals — inflammation is a positive regulator of neuronal regeneration in the central nervous system, and in fact, is required.

“Our results suggest that acute inflammation can promote central nervous system regeneration, because it provides cues necessary for the initiation of the reactive proliferation and regenerative neurogenesis in adult zebrafish brain,” the researchers say in a Science paper. “Our findings reveal a signaling pathway in zebrafish that couples the inflammatory response to efficient enhancement of stem cell activity and initiation of neural regeneration.”

Brain inflammation is very, very bad news for humans, as swollen  brain tissue can lead to anything from concussions to meningitis. In zebrafish, though, inflammation seems to be just the first step towards recovery, kickstarting the process by which neural stem cells transform into functioning brain cells.

“Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.”

This molecule called leukotriene C4 (LTC4) causes immune cells build up at the site of the injured tissue. While these cells are associated with the detrimental scarring in humans, they did not appear to hamper new-neuron growth following acute inflammation in zebrafish – but in fact initiated regeneration.

The next step for the researchers involved in the study is  to see how LTC4 behaves in mice, and then in human brain tissue from brain banks, to see if a similar response is observed.

“The pro-regenerative mechanisms identified in zebrafish could in the future be used to restrict damage after traumatic injury and to slow down neurodegenerative disorders,” said  Jan Kaslin co-author of the paper. Such disorders include Alzheimer’s and Parkinson’s.

 

share Share

This Study Finds a Chilling Link Between Personality Type and Trump Support

Malevolent traits and reduced empathy go hand in hand.

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

Some researchers believe that ultraweak photon emissions could be used to interpret brain activity.

If You’re Nostalgic for a Place, It’s Probably Somewhere Near Water

There's just something about the sea.

Fasting Before Bed Could Supercharge Your Brain’s Memory System While You Sleep

Skipping dinner might be a weird but effective way to boost your memory.

How Handing Smartphones to Kids Before They Turn 13 May Damage Their Mental Health for Life

The earlier kids get phones, the worse their mental health looks by adulthood.

Who’s Really in Charge? By 12 Months Old, Your Baby Is Already Guiding You

A new study in eLife reveals a surprising twist in infant attention research. By 12 months old, infants do not simply respond to caregivers: they often drive attention themselves, using brain-based rhythms. Caregivers are responsive, but not in control of the interaction. This study challenges the belief that adults guide early attention and shows that […]

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.

Selfies are wrong; and also not right

Your left cheek could be the secret to getting more likes on social media.

You're not imagining it, Mondays really are bad for your health

We've turned a social construct into a health problem.

Being Left-Handed Might Not Make You More Creative After All

It's less about how you use your hands than how you use your brain.