homehome Home chatchat Notifications


Virus steals bacteria immune system and kills it

Researchers at Tufts University School of Medicine came across a particular strain of bacteriophage – a virus that infects and replicates within bacteria – that had stolen the functional immune system of the cholera bacteria.  The virus used the bacteria’s immune system against it to replicate and eventually kill the bacteria. The findings hint to the prospect of developing new […]

Tibi Puiu
February 28, 2013 @ 8:57 am

share Share

Researchers at Tufts University School of Medicine came across a particular strain of bacteriophage – a virus that infects and replicates within bacteria – that had stolen the functional immune system of the cholera bacteria.  The virus used the bacteria’s immune system against it to replicate and eventually kill the bacteria. The findings hint to the prospect of developing new phage therapies against bacterial diseases like cholera.

The cholera bacteria.

The cholera bacteria.

Until now, scientists have never witnessed this kind of behavior before which has prompted them to believe that phages – typically regarded as primitive particles of DNA or RNA – lack the necessary sophisticated mechanisms to develop an adaptive immune system, which is a system that can respond rapidly to a nearly infinite variety of new challenges.

Andrew Camilli, Ph.D., of Tufts University School of Medicine and also the lead author of the present study, came by the discovery by accident while analyzing DNA sequences of phages collected from stool samples of diseased cholera patients in Bangladesh.  It was then that he identified genes that expressed a functional immune system previously found only in some bacteria.

Each phage is parasitically mated to a specific type of bacteria, and the one for the cholera bacteria is called Vibrio cholerae. Surprised by the atypical genes in the virus, Camilli used phage lacking the adaptive immune system to infect a new strain of cholera bacteria that is naturally resistant to the phage. As expected, the phage failed to penetrate the bacteria, however, when the bacteria were infected with this new strain, the phage rapidly adapted and thus gained the ability to kill the cholera bacteria. This proves that the virus has the necessary tools to adapt and kill the bacteria.

“Virtually all bacteria can be infected by phages. About half of the world’s known bacteria have this adaptive immune system, called CRISPR/Cas, which is used primarily to provide immunity against phages. Although this immune system was commandeered by the phage, its origin remains unknown because the cholera bacterium itself currently lacks this system. What is really remarkable is that the immune system is being used by the phage to adapt to and overcome the defense systems of the cholera bacteria. Finding a CRISPR/Cas system in a phage shows that there is gene flow between the phage and bacteria even for something as large and complex as the genes for an adaptive immune system,” said Seed.

“The study lends credence to the controversial idea that viruses are living creatures, and bolsters the possibility of using phage therapy to treat bacterial infections, especially those that are resistant to antibiotic treatment,” said Camilli, professor of Molecular Biology & Microbiology at Tufts University School of Medicine and member of the Molecular Microbiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts University.

Phages have been found to be highly prevalent in stool samples infected with bacteria, and since a strain capable of hosting an adaptive immune system was encountered, it seems highly likely that it came naturally. The team is currently working on a study to understand precisely how the phage immune system disables the defense systems of the cholera bacteria, such that effective phage therapies might be developed.

The findings were reported in the journal Nature.

share Share

This new blood test could find cancerous tumors three years before any symptoms

Imagine catching cancer before symptoms even appear. New research shows we’re closer than ever.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

In the UK, robotic surgery will become the default for small surgeries

In a decade, the country expects 90% of all keyhole surgeries to include robots.

Bioengineered tooth "grows" in the gum and fuses with existing nerves to mimic the real thing

Implants have come a long way. But we can do even better.

Science Just Debunked the 'Guns Don’t Kill People' Argument Again. This Time, It's Kids

Guns are the leading cause of death of kids and teens.

A Chemical Found in Acne Medication Might Help Humans Regrow Limbs Like Salamanders

The amphibian blueprint for regeneration may already be written in our own DNA.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

Liquid sugars like soda and juice sharply raise diabetes risk — solid sugars don't.

Muscle bros love their cold plunges. Science says they don't really work (for gains)

The cold plunge may not be helping those gains you work so hard for.