homehome Home chatchat Notifications


Topological insulator super-material found in nature too

Researchers have demonstrated for the first time the existence of a naturally occurring topological insulator – an exotic class of materials that possesses the unique ability to conduct electricity and the surface, but not on the inside. Previously, topological insulators have been studied and created in labs only, however now a mineral has been found […]

thinksandlearns
March 11, 2013 @ 6:08 am

share Share

Researchers have demonstrated for the first time the existence of a naturally occurring topological insulator – an exotic class of materials that possesses the unique ability to conduct electricity and the surface, but not on the inside. Previously, topological insulators have been studied and created in labs only, however now a mineral has been found that acts as one. Moreover, this natural topological insulator is a lot better than synthesized ones since it lacks structural defects typically associated with synthetic materials.

Kawazulite conducts electricity at its surface but not in its bulk. (c) AM. CHEM. SOC.

Kawazulite conducts electricity at its surface but not in its bulk. (c) AM. CHEM. SOC.

Ordinary insulators keep electricity from flowing through out the bulk material since electrons fully occupy energy bands. In topological insulators, however, the spin-orbit interaction is so strong that the insulating energy gap is inverted — the states that should have been at high energy above the gap appear below the gap.  As a result, we have highly conducting metallic states on the surface, while the inside is completely insulated.

First predicted in 2005, scientists have since then rapidly enhanced their understanding and first synthesized a topological insulator in 2008. Just a few weeks ago, researchers demonstrated the first organic topological insulator. What makes this class of materials so exciting is its ability to boost applications of spintronics devices that work with electron spin, rather than voltage. Quantum computers that encode information in electron spin would be primarily first to benefit from the advent of topological insulators.

Pascal Gehring, a solid-state physicist at the Max Planck Institute for Solid State Research in Stuttgart, Germany along with colleagues collected samples of a peculiar mineral called  kawazulite from a gold mine in the Czech Republic. Made out of bismuth, tellurium, selenium and sulphur, the analyzed 0.7 millimetres wide crystalline sheet had electron energy and momentum distribution that matched predictions for a topological insulator.

The analysis was made using photoelectron spectroscopy, which involves measuring the properties of electrons dislodged from a material when ultraviolet light is fired at its surface. Curiously enough kawazulite was synthesized in the past, however its properties are no near as reliable as the natural occurring one, since topological insulators built in the lab always have structural defects that create unwanted conduction in the bulk.

“Surprisingly, the team’s natural sample is cleaner than synthesized samples — even though you would expect it to be more dirty,” says Feng Liu, a materials scientist at the University of Utah in Salt Lake City,. “It may turn out to be cheaper to use a natural supply of topological insulators than it is to make, process and clean them in the lab.”

The findings were reported in the journal Nature Letters.

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

These Bacteria Exhale Electricity and Could Help Fight Climate Change

Some E. coli can survive by pushing out electrons instead of using oxygen

Student Finds the Psychedelic Fungus the Inventor of LSD Spent His Life Searching For

The discovery could reshape how we study psychedelic compounds in nature and medicine.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.

Your Perfume Could Be Disrupting Your Body's Chemical Force Field

Perfume might not be good for you after all.

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

Bringing vanished blooms back to life through scent, science, and storytelling.

Scientists Found 'Anti Spicy' Compounds That Make Hot Peppers Taste Milder

One day, an anti-spicy sauce could make your food less harsh.

Obsidian Artifacts Reveal a Hidden, Thriving Economy in the Aztec Empire

Aztecs weren’t just warriors and priests, they were savvy traders.

Black smoke, no pope. But what's the chemistry behind the Vatican's white/black smoke?

No decision just yet.

Scientists find remnant of Earth's primordial crust in tiny crystals in Australia

A tiny zircon crystal might just be one of the oldest Earth relics ever found.