homehome Home chatchat Notifications


New 3D model treats avalanches as both solid and liquid to get most accurate results

A new way to predict the natural disasters.

Elena Motivans
August 3, 2018 @ 1:18 pm

share Share

Avalanches are complex, and often unpredictable events. Researchers from the Laboratory of Cryospheric Sciences and Swiss Federal Institute for Snow and Avalanche Research have shed light on how avalanches form and transpire. With the help of 3D modeling experts (some of whom worked for Disney to help simulate the snow in the animated movie Frozen), they created an accurate model of an avalanche, which could help predict avalanches in the future.

The combination of 3D simulations, scientific data, and field observations led to the birth of this accurate model of a snow slab avalanche. This especially dangerous and unpredictable avalanche type occurs when the layers of snow are unstable — there is usually a weak snow pack layer under the dense top snow layer. A small trigger, such as a person skiing or walking over the snow, can cause a large crack to form in the top layer of the snowpack and initiate the avalanche.

Image credits: Chagai.

The key to modeling the avalanche was to account for the snow’s behavior as both a liquid and a solid. When a trigger causes a crack to form in the snow layer, it spreads rapidly and the snow acts as a solid. However, the spreading crack causes the weak snow pack layer to collapse. The heavy top layer (the slab) is then released and slides down, now acting like a fluid.

The researchers used a technique called the Material Point Method to model the avalanche, which was previously used to analyze the behavior of moving objects. The same technique was used to develop the algorithm “Matterhorn”, which created simulations of how various types of snow behaves. You’ve probably seen it in action as the snow in Disney’s animated movie Frozen.

“In addition to deepening our knowledge of how snow behaves, this project could make it possible to assess the potential size of an avalanche, the runout distance and the pressure on any obstacles in the avalanche’s path more accurately,” says lead reseaercher Johan Gaume of the Laboratory of Cryospheric Sciences and Swiss Federal Institute for Snow and Avalanche Research.

The novel approaches implemented in this study enabled the creation of an accurate avalanche model. This model can be used to predict and prevent avalanches, and can also be used to simulate snow in animated films.

Journal reference:  J. Gaume, T. Gast, J. Teran, A. van Herwijnen,C. Jiang. 2018. Dynamic anticrack propagation in snow, Nature Communications.

 

share Share

China Resurrected an Abandoned Soviet 'Sea Monster' That's Part Airplane, Part Hovercraft

The Soviet Union's wildest aircraft just got a second life in China.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

The zombie fungus from the age of the dinosaurs.

Your browser lets websites track you even without cookies

Most users don't even know this type of surveillance exists.

What's Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

This season doesn’t have to be about comparison or self-criticism.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

The world's oldest boomerang is even older than we thought, but it's not Australian

The story of the boomerang goes back in time even more.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

What if Every Roadkill Had a Memorial?

Road ecology, the scientific study of how road networks impact ecosystems, presents a perfect opportunity for community science projects.

Fireball Passes Over Southeastern United States

It’s a bird! It’s a plane! It’s… a bolide!