homehome Home chatchat Notifications


New 3D model treats avalanches as both solid and liquid to get most accurate results

A new way to predict the natural disasters.

Elena Motivans
August 3, 2018 @ 1:18 pm

share Share

Avalanches are complex, and often unpredictable events. Researchers from the Laboratory of Cryospheric Sciences and Swiss Federal Institute for Snow and Avalanche Research have shed light on how avalanches form and transpire. With the help of 3D modeling experts (some of whom worked for Disney to help simulate the snow in the animated movie Frozen), they created an accurate model of an avalanche, which could help predict avalanches in the future.

The combination of 3D simulations, scientific data, and field observations led to the birth of this accurate model of a snow slab avalanche. This especially dangerous and unpredictable avalanche type occurs when the layers of snow are unstable — there is usually a weak snow pack layer under the dense top snow layer. A small trigger, such as a person skiing or walking over the snow, can cause a large crack to form in the top layer of the snowpack and initiate the avalanche.

Image credits: Chagai.

The key to modeling the avalanche was to account for the snow’s behavior as both a liquid and a solid. When a trigger causes a crack to form in the snow layer, it spreads rapidly and the snow acts as a solid. However, the spreading crack causes the weak snow pack layer to collapse. The heavy top layer (the slab) is then released and slides down, now acting like a fluid.

The researchers used a technique called the Material Point Method to model the avalanche, which was previously used to analyze the behavior of moving objects. The same technique was used to develop the algorithm “Matterhorn”, which created simulations of how various types of snow behaves. You’ve probably seen it in action as the snow in Disney’s animated movie Frozen.

“In addition to deepening our knowledge of how snow behaves, this project could make it possible to assess the potential size of an avalanche, the runout distance and the pressure on any obstacles in the avalanche’s path more accurately,” says lead reseaercher Johan Gaume of the Laboratory of Cryospheric Sciences and Swiss Federal Institute for Snow and Avalanche Research.

The novel approaches implemented in this study enabled the creation of an accurate avalanche model. This model can be used to predict and prevent avalanches, and can also be used to simulate snow in animated films.

Journal reference:  J. Gaume, T. Gast, J. Teran, A. van Herwijnen,C. Jiang. 2018. Dynamic anticrack propagation in snow, Nature Communications.

 

share Share

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

Mimicking shark skin may help aviation shed fuel—and carbon

China Just Made the World's Fastest Transistor and It Is Not Made of Silicon

The new transistor runs 40% faster and uses less power.

Ice Age Humans in Ukraine Were Masterful Fire Benders, New Study Shows

Ice Age humans mastered fire with astonishing precision.

The "Bone Collector" Caterpillar Disguises Itself With the Bodies of Its Victims and Lives in Spider Webs

This insect doesn't play with its food. It just wears it.

University of Zurich Researchers Secretly Deployed AI Bots on Reddit in Unauthorized Study

The revelation has sparked outrage across the internet.

Giant Brain Study Took Seven Years to Test the Two Biggest Theories of Consciousness. Here's What Scientists Found

Both came up short but the search for human consciousness continues.

The Cybertruck is all tricks and no truck, a musky Tesla fail

Tesla’s baking sheet on wheels rides fast in the recall lane toward a dead end where dysfunctional men gather.

British archaeologists find ancient coin horde "wrapped like a pasty"

Archaeologists discover 11th-century coin hoard, shedding light on a turbulent era.

Astronauts May Soon Eat Fresh Fish Farmed on the Moon

Scientists hope Lunar Hatch will make fresh fish part of space missions' menus.

Scientists Detect the Most Energetic Neutrino Ever Seen and They Have No Idea Where It Came From

A strange particle traveled across the universe and slammed into the deep sea.