homehome Home chatchat Notifications


Lab grown stem cells may mutate in time

According to a new study by researchers at University of Melbourne, prolonged stem cell cultures are subjected to a relatively significant risk of mutation, similar to those seen in human cancers. Their results is of capital importance as it shows that lab grown cell treatment might become useless, if left to “stir” for too long. The scientists […]

Tibi Puiu
December 13, 2011 @ 12:47 pm

share Share

Human ear grown in a lab from stem cells.

Human ear grown in a lab from stem cells.

According to a new study by researchers at University of Melbourne, prolonged stem cell cultures are subjected to a relatively significant risk of mutation, similar to those seen in human cancers. Their results is of capital importance as it shows that lab grown cell treatment might become useless, if left to “stir” for too long.

The scientists studied 138 stem cell lines of diverse ethnic backgrounds – 127 Human embryonic stem (HES) cell lines and 11 induced pluripotent stem (iPS) cell lines.  These human pluripotent stem cells are crucial for the development of regenerative medicine, which can basically allow for growing a whole new heart or liver, since they can be converted into any cell type in the body.

Most of the cell lines studied retained their original number of chromosomes, even at prolonged cultures, however it was observed that about 20 percent of the cell lines mutated as a result of amplifications of a specific region in chromosome 20.

“While it is reassuring that 75 percent of the stem cell lines studied remained normal after prolonged growth in the laboratory, detecting and eliminating abnormal cells is an absolute prerequisite for clinical use of stem cell products,” said Martin Pera, co-author of the paper and chair of stem cell science at the University of Melbourne.

The study’s provided data can be considered essential to evaluating  cells for potential therapeutic applications. The project was made possible thanks to a international collaborative network formed by 35 laboratories and 125 collaborators.

The findings are reported in the latest issue of the journal Nature Biotechnology

image credit

share Share

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

This Bizarre Deep Sea Fish Uses a Tooth-Covered Forehead Club to Grip Mates During Sex

Scientists studying a strange deep sea fish uncovered the first true teeth outside the jaw.

Daddy longlegs have two more eyes they've been hiding from us

The eyes are relics form their evolutionary past.

The "Skeleton flower" turns translucent when it comes in contact with water

The "skeleton form" is because of the unusual way the flower generates color.

Spiders Are Trapping Fireflies in Their Webs and Using Their Glow to Lure Fresh Prey

Trapped fireflies become bait in a rare case of predatory outsourcing.

Horned 'Zombie Rabbits' Spook Locals in Colorado But Scientists Say These Could Hold Secrets to Cancer

The bizarre infection could help cancer research.

Does a short nap actually boost your brain? Here's what the science says

We’ve all faced the feeling at some point. When the afternoon slump hits, your focus drifts and your eyelids start to drop; it’s tiring just to stay awake and you can’t fully refocus no matter how hard you try. Most of us simply power through, either with coffee or sheer will. But increasingly, research suggests […]