homehome Home chatchat Notifications


Bacteria clogging of medical devices is more serious than previously thought

A team of researchers at Princeton University have devised an experimental set-up that closely mimics the flow of bacteria through working medical devices. Their findings show that bacteria clog medical devices extremely fast – much faster than previously thought – and warrant new strategies and designs in order to counter machine failure. The researchers used […]

Tibi Puiu
March 4, 2013 @ 10:26 am

share Share

A team of researchers at Princeton University have devised an experimental set-up that closely mimics the flow of bacteria through working medical devices. Their findings show that bacteria clog medical devices extremely fast – much faster than previously thought – and warrant new strategies and designs in order to counter machine failure.

The researchers used time lapse cameras to monitor fluid flow in narrow tubes or pores sim­i­lar to those used in water fil­ters and med­ical devices. What’s important to note is that the scientists used pressure driven fluid and rough tube surface, instead of stationary liquid and smooth surface, in order to mirror as closely as possible natural occurring conditions.

The microbes join to cre­ate slimy rib­bons that tan­gle and trap other pass­ing bac­te­ria, cre­at­ing a full block­age in a star­tlingly short period of time. (c) Princeton University

The microbes join to cre­ate slimy rib­bons that tan­gle and trap other pass­ing bac­te­ria, cre­at­ing a full block­age in a star­tlingly short period of time. (c) Princeton University

A number of bacteria commonly found in clogged devices were introduced in the experiment, and were observed over a period of 40 hours. The researchers dyed the microbes green in order to better monitor them. What they found, however, took them by surprise. The microbes steadily attached themselves to the walls of the narrow tube and began to multiply, eventually forming a slimy layer of coating called a biofilm.

Additional microbes, this time dyed red, were introduced and, naturally, these too adhered to the walls surface, where they stuck to the biofilm. During this time, however, fluid flow wasn’t considerably disrupted. Some 55 hours in the experiment,  the biofilm stream­ers tan­gled with each other and formed a sort of net-like structure that progressively trapped more and more bacteria as the snare became larger. Within an hour, the entire tube became blocked and the fluid flow stopped.

“For me the sur­prise was how quickly the biofilm stream­ers caused com­plete clog­ging,” said  Howard Stone, Princeton’s Don­ald R. Dixon ’69 and Eliz­a­beth W. Dixon Pro­fes­sor of Mechan­i­cal and Aero­space Engineering.. “There was no warn­ing that some­thing bad was about to happen.”

So in less than 60 hours of operation, their set-up had become clogged, much sooner and more devastating then anyone would have ever thought. The Princeton scientists’ work, published in the journal  Pro­ceed­ings of the National Acad­emy of Sci­ences, shows how easily susceptible water and soil filter or, most importantly, medical devices are to clogging in the face of flowing bacteria.

 

share Share

This New Coating Repels Oil Like Teflon Without the Nasty PFAs

An ultra-thin coating mimics Teflon’s performance—minus most of its toxicity.

People in Thailand were chewing psychoactive nuts 4,000 years ago. It's in their teeth

The teeth Chico, they never lie.

We Might Be Ingesting Thousands of Lung-Penetrating Microplastics Daily in Our Homes and Cars — 100x More Than Previously Estimated

Microscopic plastic particles are everywhere and there's more than we thought.

This Scientist Stepped Thousands of Times on Deadly Snakes So You Don't Have To. What He Found Could Save Lives

This scientist is built different.

Scientists Say Junk Food Might Be as Addictive as Drugs

This is especially hurtful for kids.

Tooth nerves aren't just for pain. They also protect your teeth

We should be more thankful for what's in our mouths.

Temporary Tattoo Turns Red If Your Drink Has Been Spiked

This skin-worn patch can detect GHB in drinks in under one second

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Amish Kids Almost Never Get Allergies and Scientists Finally Know Why

How Amish barns could hold the secret to preventing the onset of allergies.

Surgeons Found a Way to Resuscitate Dead Hearts and It Already Saved A Baby's Life

Can we reboot the human heart? Yes, we can, and this could save many dying babies and adults who are waiting for a transplant.