homehome Home chatchat Notifications


Why the brain gets slower as we get older

From a certain age onward, humans seem to process information at a slower pace – learning new things becomes more difficult, remembering where you put the car keys seems to give headaches, and it gets ever worse as we age even more. Neuroscientists at the University of Bristol studying dysfunctional neural communication in Alzheimer patients demonstrated that the […]

Tibi Puiu
February 1, 2012 @ 3:54 pm

share Share

From a certain age onward, humans seem to process information at a slower pace – learning new things becomes more difficult, remembering where you put the car keys seems to give headaches, and it gets ever worse as we age even more. Neuroscientists at the University of Bristol studying dysfunctional neural communication in Alzheimer patients demonstrated that the number one likely culprit to blame are the sodium channels, which are integral membrane proteins that have a direct influence on the degree of neural excitation. Although, the research was targeted on Alzheimer patients, the scientists found that the same degradation of Na+ channels in the brains of older, otherwise healthy individuals causes a loss of cognitive performance .

To encode and transmit information, the brain uses electrical signals. The researchers, lead by Professor Andy Randall and Dr Jon Brown from the University’s School of Physiology and Pharmacology, studied the electrical activity of the brain by recording the electrical signal in the hippocampus‘ cells, which plays a crucial role in the consolidation of short-term memory to long-term memory and spatial navigation. What the researchers were basically looking for was to determine the degree of neural excitation, whose main characteristic is the action potential.

“Much of our work is about understanding dysfunctional electrical signalling in the diseased brain, in particular Alzheimer’s disease. We began to question, however, why even the healthy brain can slow down once you reach my age. Previous investigations elsewhere have described age-related changes in processes that are triggered by action potentials, but our findings are significant because they show that generating the action potential in the first place is harder work in aged brain cells”, said Professor Randall.

neuron An action potential is a brief, large electrical signal which instantly branches out in the rest of the cell, until it reaches the edge and activates the synapses made with the myriad of neighboring neurons. As we age, these action potentials are harder to trigger, and this relative reluctance arises from changes to the activation properties of membrane proteins called sodium channels, which mediate the rapid upstroke of the action potential by allowing a flow of sodium ions into neurons.

With this in mind, scientists might be able to develop treatments or drugs which could open more sodium channels, and thus improve cognitive abilities.

“Also by identifying sodium channels as the likely culprit for this reluctance to produce action potentials, our work even points to ways in which we might be able modify age-related changes to neuronal excitability, and by inference cognitive ability.”

[SciGuru] image credit

share Share

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

A Single LSD Treatment Could Keep Anxiety At Bay for Months

This was all done in a controlled medical setting.

The Evolution of the Human Brain Itself May Explain Why Autism is so Common

Scientists uncover how human brain evolution boosted neurodiversity — and vulnerability to autism.

First Mammalian Brain-Wide Map May Reveal How Intuition and Decision-Making Works

The brain’s decision signals light up like a Christmas tree, from cortex to cerebellum.

Your Next Therapist Could be a Video Game or a Wearable and It Might Actually Work

An inside look at a new wave of evidence-backed digital therapies.

Researchers Discovered How to Trap Cancer Cells by "Reprogramming" Their Environment

Scientists find a way to stop glioblastoma cells by stiffening a key brain molecule

2.2 Million Fat-Removal Surgeries a Year: What's Behind the Body Contouring Boom

From liposuction to cryolipolysis, fat-removal is now one of the most common cosmetic choices worldwide.