homehome Home chatchat Notifications


Scientists find stardust in Antartic snow

The material "must have come from a supernova."

Fermin Koop
August 22, 2019 @ 3:33 pm

share Share

A group of Australian researchers working in Antarctica found stardust in freshly melted snow, discovering large amounts of a rare isotope known as iron-60 that is not natively found on Earth.

Credit: Flickr

The study, published in the journal Physical Review Letters, ruled out the chance that iron-60 found in the snow was made by human action and argued it was delivered to Earth by some type of interstellar falling rock.

Earth’s most abundant element is iron, but iron-60 has four more neutrons than the well-known element. Experts argued that iron-60 can be found in the Earth’s crust, but the source can’t be the same as the new finding because it was in snow that has accumulated in recent decades.

The team collected 500 kg (1,100 lb) of Antarctic snow from around the Kohnen Station, shipped it to Munich, melted it down, and analyzed it. The solid components were separated from meltwater and processed using a few different chemical methods.

“Our analyses allowed us to rule out cosmic radiation, nuclear weapons tests or reactor accidents as sources of the iron-60,” says Dominik Koll, an author of the study. “As there are no natural sources for this radioactive isotope on Earth, we knew that the iron-60 must have come from a supernova.”

The location gave further clues to origin of this isotope. The snow it was found in was at most 20 years old, and the researchers reasoned that they couldn’t have come from too far away in the cosmos or they would have dissipated.

“If the gas cloud hypothesis is correct, then material from ice cores older than 40,000 years would not contain interstellar iron-60,” says Koll. “This would enable us to verify the transition of the solar system into the gas cloud – that would be a groundbreaking discovery for researchers working on the environment of the solar system.”

Researchers said the source of iron-60 must be a supernova, “not so near as to kill us, but not too far to be diluted in space,” Koll argued. Particles were likely picked up as Earth travels through the Local Interstellar Cloud, a 30-light-year wide region of space that our solar system is currently passing through, he said.

Nevertheless, more research is necessary to understand where and when the iron-60 got to Earth — it has a half-life of 2.6 million years — which Koll said will require more data and ice cores that go deeper into the planet, reaching older dust.

share Share

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

The power of loyalty, in this life and the next.

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

RML’s VarEVolt battery is blazing a trail for ultra-fast EV charging and hypercar performance.

DARPA Just Beamed Power Over 5 Miles Using Lasers and Used It To Make Popcorn

A record-breaking laser beam could redefine how we send power to the world's hardest places.

Why Do Some Birds Sing More at Dawn? It's More About Social Behavior Than The Environment

Study suggests birdsong patterns are driven more by social needs than acoustics.

Nonproducing Oil Wells May Be Emitting 7 Times More Methane Than We Thought

A study measured methane flow from more than 450 nonproducing wells across Canada, but thousands more remain unevaluated.

CAR T Breakthrough Therapy Doubles Survival Time for Deadly Stomach Cancer

Scientists finally figured out a way to take CAR-T cell therapy beyond blood.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

Ancient Roman ‘Fast Food’ Joint Served Fried Wild Songbirds to the Masses

Archaeologists uncover thrush bones in a Roman taberna, challenging elite-only food myths

A Man Lost His Voice to ALS. A Brain Implant Helped Him Sing Again

It's a stunning breakthrough for neuroprosthetics

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

Japanese scientists unveil a material that dissolves in hours in contact with salt, leaving no trace behind.