homehome Home chatchat Notifications


Scientists cool semiconductor with laser light

By harnessing the science of both quantum and nano physics, scientists at the Niels Bohr Institute have come up with an innovative new way of cooling semiconductor membranes by using laser light. Through this new technique, the researchers were able to cool the tiny, thin membrane from room temperature to -269 degrees Celsius. Paradoxically, the […]

Tibi Puiu
January 23, 2012 @ 6:33 pm

share Share

Koji Usami, one of the researchers involved in the paper, maneuvering the experiment at the  Quantop laboratories at the Niels Bohr Institute. The laser light that hits the semiconducting nanomembrane is controlled with a forest of mirrors. (c) Niels Bohr Institute

Koji Usami, one of the researchers involved in the paper, maneuvering the experiment at the Quantop laboratories at the Niels Bohr Institute. The laser light that hits the semiconducting nanomembrane is controlled with a forest of mirrors. (c) Niels Bohr Institute

By harnessing the science of both quantum and nano physics, scientists at the Niels Bohr Institute have come up with an innovative new way of cooling semiconductor membranes by using laser light. Through this new technique, the researchers were able to cool the tiny, thin membrane from room temperature to -269 degrees Celsius. Paradoxically, the laser warms the bulk semiconductor material as  a whole, so one could claim that they achieved cooling by heating.

Semiconductor chips, for instance, are vital in today’s information age, and while technology tends to become ever miniaturized, the need for a more efficient energy consumption and cooling is required if tomorrow’s smartphones and tablets are to become smarter, more efficient or cheaper.

For many years now, scientists at the Niels Bohr Institute have successfully managed to cool gas atoms using laser, actually very close to absolute zero (-273 degrees Celsius), by creating entanglement between two atomic systems.

For some time we have wanted to examine how far you can extend the limits of quantum mechanics – does it also apply to macroscopic materials? It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion,” explains Professor Eugene Polzik, head of the Center of Excellence Quantop at the Niels Bohr Institute at the University of Copenhagen.

The researchers created semiconductor “membranes” with a thickness of 160 nanometers and a surface area of 1 millimeter by 1 millimeter. In their experiments, the scientists fired the laser in such a way that it influenced the mechanical movements of the membrane, until they reached a certain oscillation mode of the membrane, which allowed it to be cooled from room temperature down to minus 269 degrees C.

“The paradox,” explains Koji Usami, associate professor at Quantop at the Niels Bohr Institute., “is that even though the membrane as a whole is getting a little bit warmer, the membrane is cooled at a certain oscillation and the cooling can be controlled with laser light. So it is cooling by warming! We managed to cool the membrane fluctuations to minus 269 degrees C.”

“It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion.”

The research, published in a recent edition of the journal Nature Physics, paves the way for a range of new opportunities in the field called optomechanics, which studies the interaction between optical radiation (light) and mechanical motion. Most definitely, quantum computing will profit from this cool research. My puns can be terrible, granted.

“Efficient cooling of mechanical fluctuations of semiconducting nanomembranes by means of light could also lead to the development of new sensors for electric current and mechanical forces… Such cooling in some cases could replace expensive cryogenic cooling, which is used today and could result in extremely sensitive sensors that are only limited by quantum fluctuations,” added Polzik.

source

share Share

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

Lawyers are already citing fake, AI-generated cases and it's becoming a problem

Just in case you're wondering how society is dealing with AI.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.

Leading AI models sometimes refuse to shut down when ordered

Models trained to solve problems are now learning to survive—even if we tell them not to.

AI slop is way more common than you think. Here's what we know

The odds are you've seen it too.

Two Lightning Bolts Collided Over a Japanese Tower and Triggered a Microburst of Nuclear-Level Radiation

An invisible, split-second blast reveals a new chapter in lightning physics.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

What if your next hard drive wasn’t a box, but a string of molecules? Synthetic polymers promises to revolutionize data storage.