homehome Home chatchat Notifications


Scientists cool semiconductor with laser light

By harnessing the science of both quantum and nano physics, scientists at the Niels Bohr Institute have come up with an innovative new way of cooling semiconductor membranes by using laser light. Through this new technique, the researchers were able to cool the tiny, thin membrane from room temperature to -269 degrees Celsius. Paradoxically, the […]

Tibi Puiu
January 23, 2012 @ 6:33 pm

share Share

Koji Usami, one of the researchers involved in the paper, maneuvering the experiment at the  Quantop laboratories at the Niels Bohr Institute. The laser light that hits the semiconducting nanomembrane is controlled with a forest of mirrors. (c) Niels Bohr Institute

Koji Usami, one of the researchers involved in the paper, maneuvering the experiment at the Quantop laboratories at the Niels Bohr Institute. The laser light that hits the semiconducting nanomembrane is controlled with a forest of mirrors. (c) Niels Bohr Institute

By harnessing the science of both quantum and nano physics, scientists at the Niels Bohr Institute have come up with an innovative new way of cooling semiconductor membranes by using laser light. Through this new technique, the researchers were able to cool the tiny, thin membrane from room temperature to -269 degrees Celsius. Paradoxically, the laser warms the bulk semiconductor material as  a whole, so one could claim that they achieved cooling by heating.

Semiconductor chips, for instance, are vital in today’s information age, and while technology tends to become ever miniaturized, the need for a more efficient energy consumption and cooling is required if tomorrow’s smartphones and tablets are to become smarter, more efficient or cheaper.

For many years now, scientists at the Niels Bohr Institute have successfully managed to cool gas atoms using laser, actually very close to absolute zero (-273 degrees Celsius), by creating entanglement between two atomic systems.

For some time we have wanted to examine how far you can extend the limits of quantum mechanics – does it also apply to macroscopic materials? It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion,” explains Professor Eugene Polzik, head of the Center of Excellence Quantop at the Niels Bohr Institute at the University of Copenhagen.

The researchers created semiconductor “membranes” with a thickness of 160 nanometers and a surface area of 1 millimeter by 1 millimeter. In their experiments, the scientists fired the laser in such a way that it influenced the mechanical movements of the membrane, until they reached a certain oscillation mode of the membrane, which allowed it to be cooled from room temperature down to minus 269 degrees C.

“The paradox,” explains Koji Usami, associate professor at Quantop at the Niels Bohr Institute., “is that even though the membrane as a whole is getting a little bit warmer, the membrane is cooled at a certain oscillation and the cooling can be controlled with laser light. So it is cooling by warming! We managed to cool the membrane fluctuations to minus 269 degrees C.”

“It would mean entirely new possibilities for what is called optomechanics, which is the interaction between optical radiation, i.e. light, and a mechanical motion.”

The research, published in a recent edition of the journal Nature Physics, paves the way for a range of new opportunities in the field called optomechanics, which studies the interaction between optical radiation (light) and mechanical motion. Most definitely, quantum computing will profit from this cool research. My puns can be terrible, granted.

“Efficient cooling of mechanical fluctuations of semiconducting nanomembranes by means of light could also lead to the development of new sensors for electric current and mechanical forces… Such cooling in some cases could replace expensive cryogenic cooling, which is used today and could result in extremely sensitive sensors that are only limited by quantum fluctuations,” added Polzik.

source

share Share

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

We can still easily get AI to say all sorts of dangerous things

Jailbreaking an AI is still an easy task.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Scientists Solved a Key Mystery Regarding the Evolution of Life on Earth

A new study brings scientists closer to uncovering how life began on Earth.

Anthropic AI Wanted to Settle Pirated Books Case for $1.5 Billion. A Judge Thinks We Can Do Better

This case is quickly shaping up to be a landmark in AI history.

Scientists Finally Prove Dust Helps Clouds Freeze and It Could Change Climate Models

New analysis links desert dust to cloud freezing, with big implications for weather and climate models.