homehome Home chatchat Notifications


Scientists Build Computer That Never Crashes

Scientists and researchers at the University College of London (UCL) have built a self-healing computer that may end computer crashes forever, according to the New Scientist. Called a “systemic computer,” the machine — which is being developed by computer scientist, Dr. Peter Bentley, and UCL research engineer, Christos Sakellariou — is now operating, apparently crash-free, […]

Henry Conrad
February 25, 2013 @ 2:47 am

share Share

Scientists and researchers at the University College of London (UCL) have built a self-healing computer that may end computer crashes forever, according to the New Scientist.

Called a “systemic computer,” the machine — which is being developed by computer scientist, Dr. Peter Bentley, and UCL research engineer, Christos Sakellariou — is now operating, apparently crash-free, at the UCL campus.

New Scientist reveals that the core design of the computer takes its cue from “the apparent randomness found in nature.”   The machine can instantly recover from crashes by repairing corrupted data.

th

Mission critical

Observers have noted that the UCL computer’s revolutionary design may one day prove useful for systems that rely on computers to perform mission critical tasks — such as those in hospitals, aircraft, and various phone services also offered by RingCentral in calamity-prone areas.

The new technology can have a similarly beneficial impact on business and banking systems, which rely on massive computer networks to manage their financial transactions.  The Royal Bank of Scotland, for instance, had to set aside more than £100 million to compensate the cost of the customers who lost money when the bank’s computer system crashed in June last year.

One at a time

Typically, computers will course through data in sequential order.  They execute one instruction at a time, fetching data from the memory and executing its command before storing the computation in the memory.  The process is repeated again and again until the list of instructions is completed.  Computers perform this process under the control of a sequential timer called a program counter.

This sequential system is excellent for crunching numbers, but does not lend itself well to tasks that require simultaneous operations.  “Even when it feels like your computer is running all your software at the same time, it is just pretending to do that, flicking its attention very quickly between each program,” Dr. Bentley told the New Scientist. 

Nature isn’t like that

Dr. Bentley asserts that, because the typical computer operates on a sequential system, it is ill-suited to modelling natural processes, such as how neurons work and how bees swarm.  “Nature isn’t like that,” Dr. Bentley says.  “Its processes are distributed, decentralised, and probablistic.  And they are fault tolerant, able to heal themselves.  A computer should be able to do that,” he adds.

Dr. Bentley and Sakellariou have designed the UCL computer so that data and instructions are combined.  The instructions are stored redundantly across the machine’s various systems.  Each system, in turn, is self-reliant and has memory containing context-sensitive data.  This means it can only interact with other, similar systems.

The New Scientist notes that, while other operating systems crash when they fail to access a bit of memory, the same is not true for the UCL systemic computer.  The UCL machine’s design precludes crashing.  When one system is damaged, the machine can instantly repair itself by accessing the necessary data and instructions from other systems in the pool.

Mimicking Mother Nature’s Randomness

Rather than relying on a program counter, the UCL computer uses a pseudo-random number generator which is designed to mimic nature’s randomness.  The systems that comprise the pool then carry out instructions simultaneously, with no single system taking precedence over others.

“The systems interact in parallel, and randomly, and the result of a computation simply emerges from those interactions,” Dr.Bentley explains.

The UCL computer doesn’t sound like it should work, the New Scientist observes, but it does —  and it works much faster than expected.  Dr. Bentley and Mr. Sakellariou are presently working on teaching the computer to rewrite its own code in response to changes in its enviroment, through machine learning.

share Share

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

In 1602, the Wanli Emperor of the Ming dynasty had a big task for his scholars: a map that would depict the entire world. The results was a monumental map that would forever change China’s understanding of its place in the world. Known as the Kunyu Wanguo Quantu (坤輿萬國全圖), or A Map of the Myriad […]

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Scientists transform flossing into needle-free vaccine

In the not-too-distant future, your dentist might do more than remind you to floss—they might vaccinate you, too.

This Ancient Greek City Was Swallowed by the Sea—and Yet Refused to Die

A 3,000-year record of resilience, adaptation, and seismic survival

Low testosterone isn't killing your libido. Sugar is

Small increases in blood sugar can affect sperm and sex, even without diabetes

There might be an anti-aging secret hiding in magic mushrooms

Psilocybin extends cell life, and preserves aging DNA structures.

This Strange Material Flips Between Conductor and Insulator and This Could Supercharge Computers by 1,000 Times

New material phase could lead to computers that run 1,000 times faster

These Wild Tomatoes Are Reversing Millions of Years of Evolution

Galápagos tomatoes resurrect ancient defenses, challenging assumptions about evolution's one-way path.

Doctors Restored Hearing in Children and Adults With a Single Shot

A one-time injection helped some patients hear for the first time in their lives