homehome Home chatchat Notifications


Solar cells that mimic leaves put organic systems back in the picture

As solar cells, and obviously the solar energy sector in consequence, become ever more popular spurred by increased demand through out the world, scientists today are currently interested in two major keypoints: increasing efficiency – the most important and immediate goal at hand – and making solar cells as cheap as possible without, obviously, compromising […]

Tibi Puiu
August 9, 2013 @ 10:27 am

share Share

prototype-biomimetic-solar-cell

A prototype of the leaf-inspired solar cell. Right corner: 1cm scale bar.

As solar cells, and obviously the solar energy sector in consequence, become ever more popular spurred by increased demand through out the world, scientists today are currently interested in two major keypoints: increasing efficiency – the most important and immediate goal at hand – and making solar cells as cheap as possible without, obviously, compromising quality (solar conversion efficiency). Solar cells made out of organic material have been studied for a while in hopes of addressing the latter keypoint,  as these could be manufactured a lot cheaper while also being more environmentally friendly than silicon-based counterparts, currently the de facto used in the industry.

Organic solar cells come with a major drawback though. They deteriorate really fast due to ultraviolet ray stress, which has prompted many to deem them unfeasible. Now  Orlin Velev and Hyung-Jun Koo, two researchers at North Carolina State University, show that there’s a way around this after they designed an innovative system that constantly replenishes the solar collecting organic material, inspired by the branching vascular channels that circulate life-sustaining nutrients in leaves and human hands.

Schematic of biomimetic photovoltaic device (photo above) with microfluidic replenishment network.Left: The white arrows indicate the convection-dominant transport of dye and electrolyte molecules along the microfluidic channels. Inset: cross-section view across the dotted yellow line. Tin oxide nanoparticles and platinum catalysts are deposited on the photoanode and the counter electrode, respectively. The red arrows indicate the lateral diffusive/convective transport between the source channels and drain channels.

Schematic of biomimetic photovoltaic device (photo above) with microfluidic replenishment network.Left: The white arrows indicate the convection-dominant transport of dye and electrolyte molecules along the microfluidic channels. Inset: cross-section view across the dotted yellow line. Tin oxide nanoparticles and platinum catalysts are deposited on the photoanode and the counter electrode, respectively. The red arrows indicate the lateral diffusive/convective transport between the source channels and drain channels.

The nature-mimicking or biomimetic devices that they designed are classed as  dye-sensitized solar cells (DSSCs) since light is captured and converted into electricity by light-sensitive organic-dye molecules. These are very inexpensive to produce and supply, and are circulated along microchannels.

“Organic material in DSSCs tends to degrade, so we looked to nature to solve the problem,” Velev said. “We considered how the branched network in a leaf maintains water and nutrient levels throughout the leaf. Our microchannel solar cell design works in a similar way.

“Photovoltaic cells rendered ineffective by high intensities of ultraviolet rays were regenerated by pumping fresh dye into the channels while cycling the exhausted dye out of the cell. This process restores the device’s effectiveness in producing electricity over multiple cycles.”

The DSSCs were reported in the journal Scientific Reports. It’s worth mentioning some other biomimetic solar cells that are currently being employed, but whose design process and working principle take an alternate root. These are typically referred to as “artificial leaf” solar cell systems, and as you might guess work by mimicking as closely as possible plant photosynthesis. These systems produce hydrogen fuel, which can be used to power anything even electrical generators, only out of water and light. They’re still pretty far from becoming reliable, but we’re getting there.

share Share

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

This isn’t your average timber.

A Provocative Theory by NASA Scientists Asks: What If We Weren't the First Advanced Civilization on Earth?

The Silurian Hypothesis asks whether signs of truly ancient past civilizations would even be recognisable today.

Scientists Created an STD Fungus That Kills Malaria-Carrying Mosquitoes After Sex

Researchers engineer a fungus that kills mosquitoes during mating, halting malaria in its tracks

From peasant fodder to posh fare: how snails and oysters became luxury foods

Oysters and escargot are recognised as luxury foods around the world – but they were once valued by the lower classes as cheap sources of protein.

Rare, black iceberg spotted off the coast of Labrador could be 100,000 years old

Not all icebergs are white.

We haven't been listening to female frog calls because the males just won't shut up

Only 1.4% of frog species have documented female calls — scientists are listening closer now

A Hawk in New Jersey Figured Out Traffic Signals and Used Them to Hunt

An urban raptor learns to hunt with help from traffic signals and a mental map.

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

Long before Siri or ChatGPT, there was ELIZA: a simple yet revolutionary program from the 1960s.

Almost Half of Teens Say They’d Rather Grow Up Without the Internet

Teens are calling for stronger digital protections, not fewer freedoms.

China’s Ancient Star Chart Could Rewrite the History of Astronomy

Did the Chinese create the first star charts?