homehome Home chatchat Notifications


Closer then ever to nuclear fusion, according to physicists

Physicists have been dreaming of achieving controlled nuclear fusion for decades, and year by year we’ve been getting closer to turning it into reality. A recent paper published in the journal Physics of Plasmas reports improvements in the design of an experimental set-up capable of igniting a self-sustained fusion reaction with high yields of energy. Researchers at […]

Tibi Puiu
October 3, 2013 @ 6:20 am

share Share

Physicists have been dreaming of achieving controlled nuclear fusion for decades, and year by year we’ve been getting closer to turning it into reality. A recent paper published in the journal Physics of Plasmas reports improvements in the design of an experimental set-up capable of igniting a self-sustained fusion reaction with high yields of energy. Researchers at the National Ignition Facility (NIF) claim they’re currently tackling one big obstacle that comes is in the way of fusion ignition.

The preamplifiers of the National Ignition Facility. The unified lasers deliver 1.8 megajoules of energy and 500 terawatts of power — 1,000 times more than the United States uses at any one moment. (Credit: Damien Jemison/LLNL)

The preamplifiers of the National Ignition Facility. The unified lasers deliver 1.8 megajoules of energy and 500 terawatts of power — 1,000 times more than the United States uses at any one moment. (Credit: Damien Jemison/LLNL)

Nuclear fusion is a nuclear reaction in which two or more atomic nuclei collide at very high speeds and energies and fuse together leading to the creation of a new atom. At the dawn of the Universe, there was only Hydrogen, and it is through fusion that all the other elements surfaced. If lighter elements are fused (lighter than Iron), the nuclear reaction releases energies – lots of it. If the fused elements are heavier than iron, then the reaction absorbs energy. This is why in fission, which is the exact opposite of nuclear fusion, very heavy elements are employed to release energy.

Nuclear fusion, however, requires tremendous amounts of energy to kick-start. The challenge lies in designing reactors that capable of producing more energy than it goes into igniting the reaction. Even so there are technical challenges in order to achieve the highly stable precisely directed implosion required for ignition. One such obstacle has been outlined the NIF researchers in their report.

Closer to a fusion dream

Schematic of NIF ignition target and capsule (credit: M. J. Edwards et al., Physics of Plasmas)

Schematic of NIF ignition target and capsule (credit: M. J. Edwards et al., Physics of Plasmas)

To achieve ignition, NIF reserachers used 192 laser beam that fire simultaneously inside a specially designed cryogenic hollow chamber called a hohlraum (German for “hollow room”), just the size of a pencil. Together the combined power of the lasers deliver 1.8 megajoules of energy and 500 terrawatts of power – 1,000 times more than the United States uses any single moment – inside the hohlraum in billionth-of-a-second pulses.  All this power is directed towards  a ball-bearing-size capsule containing two hydrogen isotopes, deuterium and tritium (D-T) inside the hallow chamber, which creates a sort of “X-ray oven” that implodes the isotope capsules  to temperatures and pressures similar to those found at the center of the sun.

“What we want to do is use the X-rays to blast away the outer layer of the capsule in a very controlled manner, so that the D-T pellet is compressed to just the right conditions to initiate the fusion reaction,” explained John Edwards, NIF associate director for inertial confinement fusion and high-energy-density science. “In our new review article, we report that the NIF has met many of the requirements believed necessary to achieve ignition—sufficient X-ray intensity in the hohlraum, accurate energy delivery to the target and desired levels of compression—but that at least one major hurdle remains to be overcome, the premature breaking apart of the capsule.”

The NIF researchers used monitoring tools to diagnose the capsule breaking step by step.

 “In some ignition tests, we measured the scattering of neutrons released and found different strength signals at different spots around the D-T capsule,” Edwards said.

“This indicates that the shell’s surface is not uniformly smooth and that in some places, it’s thinner and weaker than in others. In other tests, the spectrum of X-rays emitted indicated that the D-T fuel and capsule were mixing too much — the results of hydrodynamic instability — and that can quench the ignition process.”

The NIF scientists are now concentrating all their efforts on determining the exact nature of this instability and mitigate it. This is only one big obstacle the scientists face. There are still many major milestones that need to be reached, but advances and reports so far are promising – we’re getting there: tremendously large, clean and safe energy.

share Share

After 100 years, physicists still don't agree what quantum physics actually means

Does God play dice with the universe? Well, depends who you ask.

Physicists Make First Qubit out of Antimatter and It Could One Day Explain Why the Universe Exists At All

Antimatter was held in a qubit state for nearly a minute.

The 400-Year-Old, Million-Dollar Map That Put China at the Center of the World

In 1602, the Wanli Emperor of the Ming dynasty had a big task for his scholars: a map that would depict the entire world. The results was a monumental map that would forever change China’s understanding of its place in the world. Known as the Kunyu Wanguo Quantu (坤輿萬國全圖), or A Map of the Myriad […]

A New AI Can Spot You by How Your Body Bends a Wi-Fi Signal

You don’t need a phone or camera to be tracked anymore: just wi-fi.

7,000 Steps a Day Keep the Doctor Away

Just 7,000 steps a day may lower your risk of death, dementia, and depression.

Scientists transform flossing into needle-free vaccine

In the not-too-distant future, your dentist might do more than remind you to floss—they might vaccinate you, too.

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

No laws of physics were harmed in this process.

This Startup Claims It Can Turn Mercury Into Gold Using Fusion Energy and Scientists Are Intrigued

The age-old alchemist's dream may find new life in the heart of a fusion reactor.

Our Radar Systems Have Accidentally Turned Earth into a Giant Space Beacon for the Last 75 Years and Scientists Say Aliens Could Be Listening

If aliens have a radio telescope, they already know we exist.

Mesmerizing Fluid “Fireworks” Reveal Clues for Trapping Carbon Underground

Simulations show stunning patterns that could shape future carbon capture strategies.