homehome Home chatchat Notifications


Nano-enhanced textiles could lead us to a brighter future with no laundry

Tired of laundry day? Pioneering nano research into self-cleaning textiles could soon make cleaning your clothes as easy as hanging them out on a sunny day.

Alexandru Micu
March 23, 2016 @ 5:39 pm

share Share

Tired of laundry day? Pioneering nano research into self-cleaning textiles could soon make cleaning your clothes as easy as hanging them out on a sunny day.

Cotton textile fibers and nanostructures. Image magnified 200 times.
Image credits RMIT University

A team from the Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Lab at the RMIT University in Melbourne, Australia, have developed a cheap and efficient method of incorporating nanostructures which degrade organic when exposed to light directly into textile fibers. Thier new production technology could pave the way for clothes that can shrug off grime and slime when put under a light bulb or worn out in the sun.

When exposed to light, the nanostructures release so-called hot electrons — particles that gain very high kinetic energy after being accelerated by a strong, high intensity electrical field within a semiconductor. These electrons then consume their energy to degrade organic matter stuck in the weave around them. The researchers worked with copper and silver-based compounds to create their nanostructures, as these are known for their ability to absorb visible wavelength intervals of light.

The color red indicates the presence of silver nanoparticles. The image shows a full coverage of the material with nanostructures grown by the RMIT team. Image magnified 200 times.
Image credits RMIT University

Self-cleaning clothes aren’t a new concept. But the RMIT team aimed to develop a method that would allow active structures to be permanently attached to the fibers and be usable on an industrial scale at the same time. Their novel solution was to grow them directly onto the materials by dipping these into a series of chemical solutions. The whole process takes roughly 30 minutes and results in extremely stable nanostructures.

During laboratory tests, it took less than six minutes of light exposure for the nano-enhanced fabrics to spontaneously clean themselves.

Nanostructures grown on cotton textiles by RMIT University researchers. Image magnified 150,000 times.
Image credits RMIT University

“The advantage of textiles is they already have a 3D structure so they are great at absorbing light, which in turn speeds up the process of degrading organic matter,” said Lead researcher Dr Rajesh Ramanathan.

Dr Ramanathan says that the process has a variety of possible applications in catalysis-based industries such as agrochemicals, pharmaceuticals and natural products, and can be easily scaled up to industrial levels.

“Our next step will be to test our nano-enhanced textiles with organic compounds that could be more relevant to consumers, to see how quickly they can handle common stains like tomato sauce or wine.”

“There’s more work to do to before we can start throwing out our washing machines, but this advance lays a strong foundation for the future development of fully self-cleaning textiles,” Ramanathan concluded.

The full paper, titled “Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis” has been published online in the journal Advanced Materials Interfaces and is available here.

 

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.